7,969 research outputs found

    Implications of Particle Acceleration in Active Galactic Nuclei for Cosmic Rays and High Energy Neutrino Astronomy

    Get PDF
    We consider the production of high energy neutrinos and cosmic rays in radio-quiet active galactic nuclei (AGN) or in the central regions of radio-loud AGN. We use a model in which acceleration of protons takes place at a shock in an accretion flow onto a supermassive black hole, and follow the cascade that results from interactions of the accelerated protons in the AGN environment. We use our results to estimate the diffuse high energy neutrino intensity and cosmic ray intensity due to AGN. We discuss our results in the context of high energy neutrino telescopes under construction, and measurements of the cosmic ray composition in the region of the ``knee'' in the energy spectrum at ∼107\sim 10^7 GeV.Comment: 37 pages of compressed and uuencoded postscript; hardcopy available on request; to be published in Astroparticle Physics; ADP-AT-94-

    Adaptive finite element analysis based on p-convergence

    Get PDF
    The results of numerical experiments are presented in which a posteriori estimators of error in strain energy were examined on the basis of a typical problem in linear elastic fracture mechanics. Two estimators were found to give close upper and lower bounds for the strain energy error. The potential significance of this is that the same estimators may provide a suitable basis for adaptive redistribution of the degrees of freedom in finite element models

    Attractive Bose-Einstein Condensates in three dimensions under rotation: Revisiting the problem of stability of the ground state in harmonic traps

    Full text link
    We study harmonically trapped ultracold Bose gases with attractive interparticle interactions under external rotation in three spatial dimensions and determine the critical value of the attraction strength where the gas collapses as a function of the rotation frequency. To this end we examine the stationary state in the corotating frame with a many-body approach as well as within the Gross-Pitaevskii theory of systems in traps with different anisotropies. In contrast to recently reported results [N. A. Jamaludin, N. G. Parker, and A. M. Martin, Phys. Rev. A \textbf{77}, 051603(R) (2008)], we find that the collapse is not postponed in the presence of rotation. Unlike repulsive gases, the properties of the attractive system remain practically unchanged under rotation in isotropic and slightly anisotropic traps.Comment: 15 pages, 1 figure, 1 tabl

    3D-2D crossover in the naturally layered superconductor (LaSe)1.14(NbSe2)

    Full text link
    The temperature and angular dependencies of the resistive upper critical magnetic field Bc2B_{c2} reveal a dimensional crossover of the superconducting state in the highly anisotropic misfit-layer single crystal of (LaSe)1.14_{1.14}(NbSe2_2) with the critical temperature TcT_c of 1.23 K. The temperature dependence of the upper critical field Bc2∥ab(T)B_{c2\parallel ab}(T) for a field orientation along the conducting (ab)(ab)-planes displays a characteristic upturn at 1.1 K and below this temperature the angular dependence of Bc2B_{c2} has a cusp around the parallel field orientation. Both these typical features are observed for the first time in a naturally crystalline layered system.Comment: 7 pages incl. 3 figure

    Constraints on Extragalactic Point Source Flux from Diffuse Neutrino Limits

    Full text link
    We constrain the maximum flux from extragalactic neutrino point sources by using diffuse neutrino flux limits. We show that the maximum flux from extragalactic point sources is E^2(dN/dE) < 1.4 x 10^-9 (L_nu/2x10^43 erg/s)^1/3 GeV cm-^2 s^-1 from individual point sources with average neutrino luminosity per decade, L_nu. It depends only slightly on factors such as the inhomogeneous matter density distribution in the local universe, the luminosity distribution, and the assumed spectral index. The derived constraints are at least one order of magnitude below the current experimental limits from direct searches. Significant constraints are also derived on the number density of neutrino sources and on the total neutrino power density.Comment: 7 pages, 3 figures, and 2 table

    Characterisation of the Etching Quality in Micro-Electro-Mechanical Systems by Thermal Transient Methodology

    Get PDF
    Our paper presents a non-destructive thermal transient measurement method that is able to reveal differences even in the micron size range of MEMS structures. Devices of the same design can have differences in their sacrificial layers as consequence of the differences in their manufacturing processes e.g. different etching times. We have made simulations examining how the etching quality reflects in the thermal behaviour of devices. These simulations predicted change in the thermal behaviour of MEMS structures having differences in their sacrificial layers. The theory was tested with measurements of similar MEMS devices prepared with different etching times. In the measurements we used the T3Ster thermal transient tester equipment. The results show that deviations in the devices, as consequence of the different etching times, result in different temperature elevations and manifest also as shift in time in the relevant temperature transient curves.Comment: Submitted on behalf of TIMA Editions (http://irevues.inist.fr/tima-editions

    Thermal measurement and modeling of multi-die packages

    Get PDF
    Thermal measurement and modeling of multi-die packages became a hot topic recently in different fields like RAM chip packaging or LEDs / LED assemblies, resulting in vertical (stacked) and lateral arrangement. In our present study we show results for a mixed arrangement: an opto-coupler device has been investigated with 4 chips in lateral as well as vertical arrangement. In this paper we give an overview of measurement and modeling techniques and results for stacked and MCM structures, describe our present measurement results together with our structure function based methodology of validating the detailed model of the package being studied. Also, we show how to derive junction-to-pin thermal resistances with a technique using structure functions.Comment: Submitted on behalf of TIMA Editions (http://irevues.inist.fr/tima-editions

    Electronic structure of amorphous germanium disulfide via density functional molecular dynamics simulations

    Full text link
    Using density functional molecular dynamics simulations we study the electronic properties of glassy g-GeS2_2. We compute the electronic density of states, which compares very well with XPS measurements, as well as the partial EDOS and the inverse participation ratio. We show the electronic contour plots corresponding to different structural environments, in order to determine the nature of the covalent bonds between the atoms. We finally study the local atomic charges, and analyze the impact of the local environment on the charge transfers between the atoms. The broken chemical order inherent to amorphous systems leads to locally charged zones when integrating the atomic charges up to nearest-neighbor distances.Comment: 13 pages, 9 figures; to appear in Phys. Rev.

    Multi-component symmetry-projected approach for molecular ground state correlations

    Get PDF
    The symmetry-projected Hartree--Fock ansatz for the electronic structure problem can efficiently account for static correlation in molecules, yet it is often unable to describe dynamic correlation in a balanced manner. Here, we consider a multi-component, systematically-improvable approach, that accounts for all ground state correlations. Our approach is based on linear combinations of symmetry-projected configurations built out of a set of non-orthogonal, variationally optimized determinants. The resulting wavefunction preserves the symmetries of the original Hamiltonian even though it is written as a superposition of deformed (broken-symmetry) determinants. We show how short expansions of this kind can provide a very accurate description of the electronic structure of simple chemical systems such as the nitrogen and the water molecules, along the entire dissociation profile. In addition, we apply this multi-component symmetry-projected approach to provide an accurate interconversion profile among the peroxo and bis(μ\mu-oxo) forms of [Cu2_2O2_2]2+^{2+}, comparable to other state-of-the-art quantum chemical methods
    • …
    corecore