70,138 research outputs found
Children's suggestibility in relation to their understanding about sources of knowledge
In the experiments reported here, children chose either to maintain their initial belief about an object's identity or to accept the experimenter's contradicting suggestion. Both 3– to 4–year–olds and 4– to 5–year–olds were good at accepting the suggestion only when the experimenter was better informed than they were (implicit source monitoring). They were less accurate at recalling both their own and the experimenter's information access (explicit recall of experience), though they performed well above chance. Children were least accurate at reporting whether their final belief was based on what they were told or on what they experienced directly (explicit source monitoring). Contrasting results emerged when children decided between contradictory suggestions from two differentially informed adults: Three– to 4–year–olds were more accurate at reporting the knowledge source of the adult they believed than at deciding which suggestion was reliable. Decision making in this observation task may require reflective understanding akin to that required for explicit source judgments when the child participates in the task
Saturn Forms by Core Accretion in 3.4 Myr
We present two new in situ core accretion simulations of Saturn with planet
formation timescales of 3.37 Myr (model S0) and 3.48 Myr (model S1), consistent
with observed protostellar disk lifetimes. In model S0, we assume rapid grain
settling reduces opacity due to grains from full interstellar values (Podolak
2003). In model S1, we do not invoke grain settling, instead assigning full
interstellar opacities to grains in the envelope. Surprisingly, the two models
produce nearly identical formation timescales and core/atmosphere mass ratios.
We therefore observe a new manifestation of core accretion theory: at large
heliocentric distances, the solid core growth rate (limited by Keplerian
orbital velocity) controls the planet formation timescale. We argue that this
paradigm should apply to Uranus and Neptune as well.Comment: 4 pages, including 1 figure, submitted to ApJ Letter
The Redshift of GRB 970508
GRB 970508 is the second gamma-ray burst (GRB) for which an optical afterglow
has been detected. It is the first GRB for which a distance scale has been
determined: absorption and emission features in spectra of the optical
afterglow place GRB 970508 at a redshift of z >= 0.835 (Metzger et al. 1997a,
1997b). The lack of a Lyman-alpha forest in these spectra further constrains
this redshift to be less than approximately 2.3. I show that the spectrum of
the optical afterglow of GRB 970508, once corrected for Galactic absorption, is
inconsistent with the relativistic blast-wave model unless a second, redshifted
source of extinction is introduced. This second source of extinction may be the
yet unobserved host galaxy. I determine its redshift to be z =
1.09^{+0.14}_{-0.41}, which is consistent with the observed redshift of z =
0.835. Redshifts greater than z = 1.40 are ruled out at the 3 sigma confidence
level.Comment: Accepted to The Astrophysical Journal (Letters), 10 pages, LaTe
Pulse contrast enhancement via non-collinear sum-frequency generation with the signal and idler of an optical parametric amplifier
We outline an approach for improving the temporal contrast of a
high-intensity laser system by 8 orders of magnitude using non-collinear
sum-frequency generation with the signal and idler of an optical parametric
amplifier. We demonstrate the effectiveness of this technique by cleaning
pulses from a millijoule-level chirped-pulse amplification system to provide
10 intensity contrast relative to all pre-pulses and amplified
spontaneous emission 5~ps prior to the main pulse. The output maintains
percent-level energy stability on the time scales of a typical user experiment
at our facility, highlighting the method's reliability and operational
efficiency. After temporal cleansing, the pulses are stretched in time before
seeding two multi-pass, Ti:sapphire-based amplifiers. After re-compression, the
1~J, 40~fs (25~TW) laser pulses maintain a 10 intensity contrast
30~ps prior to the main pulse. This technique is both energy-scalable and
appropriate for preparing seed pulses for a TW- or PW-level chirped-pulse
amplification laser system
Shear-Free Gravitational Waves in an Anisotropic Universe
We study gravitational waves propagating through an anisotropic Bianchi I
dust-filled universe (containing the Einstein-de-Sitter universe as a special
case). The waves are modeled as small perturbations of this background
cosmological model and we choose a family of null hypersurfaces in this
space-time to act as the histories of the wavefronts of the radiation. We find
that the perturbations we generate can describe pure gravitational radiation if
and only if the null hypersurfaces are shear-free. We calculate the
gauge-invariant small perturbations explicitly in this case. How these differ
from the corresponding perturbations when the background space-time is
isotropic is clearly exhibited.Comment: 32 pages, accepted for publication in Physical Review
Consideration of space applications transfer centers for the NASA office of applications
The concept of Space Applications Transfer Centers is examined to consider the design of the first of these facilities. The questions to be considered are listed
Polynomial Cointegration among Stationary Processes with Long Memory
n this paper we consider polynomial cointegrating relationships among
stationary processes with long range dependence. We express the regression
functions in terms of Hermite polynomials and we consider a form of spectral
regression around frequency zero. For these estimates, we establish consistency
by means of a more general result on continuously averaged estimates of the
spectral density matrix at frequency zeroComment: 25 pages, 7 figures. Submitted in August 200
- …
