9,640 research outputs found

    Network Synthesis of Linear Dynamical Quantum Stochastic Systems

    Get PDF
    The purpose of this paper is to develop a synthesis theory for linear dynamical quantum stochastic systems that are encountered in linear quantum optics and in phenomenological models of linear quantum circuits. In particular, such a theory will enable the systematic realization of coherent/fully quantum linear stochastic controllers for quantum control, amongst other potential applications. We show how general linear dynamical quantum stochastic systems can be constructed by assembling an appropriate interconnection of one degree of freedom open quantum harmonic oscillators and, in the quantum optics setting, discuss how such a network of oscillators can be approximately synthesized or implemented in a systematic way from some linear and non-linear quantum optical elements. An example is also provided to illustrate the theory.Comment: Revised and corrected version, published in SIAM Journal on Control and Optimization, 200

    The Las Campanas Infra-red Survey. V. Keck Spectroscopy of a large sample of Extremely Red Objects

    Full text link
    (Abridged) We present deep Keck spectroscopy, using the DEIMOS and LRIS spectrographs, of a large and representative sample of 67 ``Extremely Red Objects'' (EROs) to H=20.5, with I-H>3.0, in three of the Las Campanas Infrared Survey fields. Spectroscopic redshifts are determined for 44 sources, of which only two are contaminating low mass stars. When allowance is made for incompleteness, the spectroscopic redshift distribution closely matches that predicted earlier on the basis of photometric data. Our spectra are of sufficient quality that we can address the important question of the nature and homogeneity of the z>0.8 ERO population. A dominant old stellar population is inferred for 75% of our spectroscopic sample; a higher fraction than that seen in smaller, less-complete samples with broader photometric selection criteria (e.g. R-K). However, only 28% have spectra with no evidence of recent star formation activity, such as would be expected for a strictly passively-evolving population. More than ~30% of our absorption line spectra are of the `E+A' type with prominent Balmer absorption consistent, on average, with mass growth of 5-15% in the past Gyr. We use our spectroscopic redshifts to improve earlier estimates of the spatial clustering of this population as well as to understand the significant field-to-field variation. Our spectroscopy enables us to pinpoint a filamentary structure at z=1.22 in the Chandra Deep Field South. Overall, our study suggests that the bulk of the ERO population is an established population of clustered massive galaxies undergoing intermittent activity consistent with continued growth over the redshift interval 0.8<z<1.6.Comment: 27 pages, including 14 figures and appendix of spectra (at low resolution). Full resolution paper can be found at http://www.ast.cam.ac.uk/~md . To appear in MNRA

    Quantum Computation as Geometry

    Full text link
    Quantum computers hold great promise, but it remains a challenge to find efficient quantum circuits that solve interesting computational problems. We show that finding optimal quantum circuits is essentially equivalent to finding the shortest path between two points in a certain curved geometry. By recasting the problem of finding quantum circuits as a geometric problem, we open up the possibility of using the mathematical techniques of Riemannian geometry to suggest new quantum algorithms, or to prove limitations on the power of quantum computers.Comment: 13 Pages, 1 Figur

    Extremal Quantum Correlations and Cryptographic Security

    Get PDF
    We investigate a fundamental property of device independent security in quantum cryptography by characterizing probability distributions which are necessarily independent of the measurement results of any eavesdropper. We show that probability distributions that are secure in this sense are exactly the extremal quantum probability distributions. This allows us to give a characterization of security in algebraic terms. We apply the method to common examples for two-party as well as multi-party setups and present a scheme for verifying security of probability distributions with two parties, two measurement settings, and two outcomes.Comment: 7 pages, 2 figures, revised version, accepted for publication in Phys. Rev. Let

    NHEJ protects mycobacteria in stationary phase against the harmful effects of desiccation

    Get PDF
    The physiological role of the non-homologous end-joining (NHEJ) pathway in the repair of DNA double-strand breaks (DSBs) was examined in Mycobacterium smegmatis using DNA repair mutants (DeltarecA, Deltaku, DeltaligD, Deltaku/ligD, DeltarecA/ku/ligD). Wild-type and mutant strains were exposed to a range of doses of ionizing radiation at specific points in their life-cycle. NHEJ-mutant strains (Deltaku, DeltaligD, Deltaku/ligD) were significantly more sensitive to ionizing radiation (IR) during stationary phase than wild-type M. smegmatis. However, there was little difference in IR sensitivity between NHEJ-mutant and wild-type strains in logarithmic phase. Similarly, NHEJ-mutant strains were more sensitive to prolonged desiccation than wild-type M. smegmatis. A DeltarecA mutant strain was more sensitive to desiccation and IR during both stationary and especially in logarithmic phase, compared to wild-type strain, but it was significantly less sensitive to IR than the DeltarecA/ku/ligD triple mutant during stationary phase. These data suggest that NHEJ and homologous recombination are the preferred DSB repair pathways employed by M. smegmatis during stationary and logarithmic phases, respectively

    Semiclassical theory of cavity-assisted atom cooling

    Get PDF
    We present a systematic semiclassical model for the simulation of the dynamics of a single two-level atom strongly coupled to a driven high-finesse optical cavity. From the Fokker-Planck equation of the combined atom-field Wigner function we derive stochastic differential equations for the atomic motion and the cavity field. The corresponding noise sources exhibit strong correlations between the atomic momentum fluctuations and the noise in the phase quadrature of the cavity field. The model provides an effective tool to investigate localisation effects as well as cooling and trapping times. In addition, we can continuously study the transition from a few photon quantum field to the classical limit of a large coherent field amplitude.Comment: 10 pages, 8 figure

    Assignment of the NV0 575 nm zero-phonon line in diamond to a 2E-2A2 transition

    Full text link
    The time-averaged emission spectrum of single nitrogen-vacancy defects in diamond gives zero-phonon lines of both the negative charge state at 637 nm (1.945 eV) and the neutral charge state at 575 nm (2.156 eV). This occurs through photo-conversion between the two charge states. Due to strain in the diamond the zero-phonon lines are split and it is found that the splitting and polarization of the two zero-phonon lines are the same. From this observation and consideration of the electronic structure of the nitrogen-vacancy center it is concluded that the excited state of the neutral center has A2 orbital symmetry. The assignment of the 575 nm transition to a 2E - 2A2 transition has not been established previously.Comment: 5 pages, 5 figure

    Quantum Heating of a nonlinear resonator probed by a superconducting qubit

    Full text link
    We measure the quantum fluctuations of a pumped nonlinear resonator, using a superconducting artificial atom as an in-situ probe. The qubit excitation spectrum gives access to the frequency and temperature of the intracavity field fluctuations. These are found to be in agreement with theoretical predictions; in particular we experimentally observe the phenomenon of quantum heating
    corecore