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We investigate a fundamental property of device-independent security in quantum cryptography by

characterizing probability distributions which are necessarily independent of the measurement results of

any eavesdropper. We show that probability distributions that are secure in this sense are exactly the

extremal quantum probability distributions. This allows us to give a characterization of security in

algebraic terms. We apply the method to common examples for two-party as well as multiparty setups and

present a scheme for verifying security of probability distributions with two parties, two measurement

settings, and two outcomes.
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The idea of using quantum systems for secure commu-
nication has been around for more than 25 years now. But
still the boundaries of quantum cryptography have not been
fully understood. Only recently has a remarkable feature
of quantum systems been realized, namely, that observed
violations of a Bell inequality may imply cryptographic
security, even if the measurements that lead to the violation
are unknown to legitimate parties. This principle goes
under the name ‘‘device-independent security’’ and has
been proven against collective attacks [1] and, recently,
against arbitrary attacks for memoryless measurement de-
vices [2,3]. But still no proof for the most general situation
is known. In this Letter, we focus on the question of when
measurement outcomes obtained by the legitimate parties
are independent of measurements performed by an eaves-
dropper. We give a necessary and sufficient condition for
this under the assumption that the probability distributions
are known without error.

We consider a quantum correlation experiment with N
separated parties, each performing one of M different local
measurements withK outcomes. We denote this situation by
the triple ðN;M;KÞ. In a device-independent scenario, the
parties (usuallyN ¼ 2) want to extract a secret key from the
observed correlations in which the security estimation is
solely based on the measured probability distributions.
There are no assumptions on the proper functioning of the
measurement devices or the measured system, e.g., on their
dimension. Probability distributions that are useful for cryp-
tography have to feature certain properties. First, the ob-
tained correlations should not permit a local hidden variable
(LHV) model, as in this case a potential adversary can have
full knowledge about the correlations. Second, the correla-
tions should be only weakly correlated to any possible
measurement of an adversary. The first property is well
known to be equivalent to violating a Bell inequality (see
below), but the latter still lacks a concrete characterization.

In this Letter, we address this problem by specifying
all probability distributions which do not allow a LHV
model and are provably statistically independent of the

knowledge of any eavesdropper. We show that these proba-
bility distributions, which we call secure, can completely
be characterized in geometric terms. Indeed, in the convex
bodyQ of all quantum probability distributions, the secure
points are precisely the nonclassical extremal points, i.e.,
those which are not deterministic and cannot be obtained as
a proper convex combination of other points in Q.
The characterization of extremal points in Q is of

general interest, and numerical approaches to determine
them are known [4,5]. In our examples, we provide and
discuss different tools to certify and find extremal proba-
bility distributions for particular ðN;M;KÞ cases. In many
situations, it turns out to be easier to establish a stronger
property, i.e., that the algebraic structure of the measure-
ment operators is completely determined by the probability
distributions. This also leads to a stronger notion of
security. The most prominent example (see example 3)
are correlations which maximally violate the Clauser-
Horne-Shimony-Holt inequality [6].
Our results have links to previous results obtained in the

framework of nonsignaling correlations, i.e., theories that
are more general than quantum theory. One direction of
our result, namely, that extremality implies security, was
proven in Ref. [7] for nonsignaling theories in the bipartite
case. In this Letter, we discuss only the quantum frame-
work, although our proofs can in principle be adapted to
any nonsignaling theory.
Definitions.—For simplicity, we consider the general

ðN;M;KÞ case, even though the results are also valid for
different numbers of measurement settings and outcomes
for each party. We denote the probability for obtaining
a string of outcomes x ¼ ðx1; . . . ; xNÞ given a string of
measurement settings s ¼ ðs1; . . . ; sNÞ by Pðx j sÞ. These
numbers are assumed to be known exactly; i.e., we do not
consider the uncertainties involved in estimating such
probabilities from a finite sample.
The set of probability distributions P conform to a

LHV model, which can be realized by assuming the
measurements reveal outcomes whose probabilities are
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predetermined, is called the set C of classical correlations. It
is a polytope, i.e., generated by a finite number of extremal
points, which are given by the assignment of definite out-
comes to each measurement. The faces (of maximal dimen-
sion) correspond to inequalities, which are linear in P, and
are called (tight) Bell inequalities. In the ð2; 2; 2Þ case
all tight Bell inequalities are equivalent to the Clauser-
Horne-Shimony-Holt inequality [8]. A survey about Bell
inequalities and further references can be found in Ref. [9].

We are interested in the set Q of quantum correlations,
which is defined as the set of all probability distributions P
that can be realized by a quantum representation

P ðx j sÞ ¼ tr½�Fðx j sÞ�; (1)

where � is a density operator on a Hilbert spaceH , whose
dimension is not constrained and can be infinite, and
Fðx j sÞ ¼ F1ðx1 j s1Þ . . .FNðxN j sNÞ is a product of com-
muting operators on H . fFiðx j sÞgx are the measurement
operators of the observable chosen by the ith party accord-
ing to the measurement setting s. Thus the Fiðx j sÞ are
positive operators satisfying

P
K
x¼1 Fiðx j sÞ ¼ 1 and have

to commute for different sites, since the parties are inde-
pendent. As shown in Ref. [10], every P which can be
realized in this way can also be realized in a simplified
‘‘standard’’ form, in which � ¼ j�ih�j is a pure state and
the operators Fiðx j sÞ are projections. Moreover, in the
standard form, j�i is cyclic for the algebra AðFÞ, which
is obtained from the Fiðx j sÞ by taking products, linear
combinations, and limits of expectation values. Cyclic
means that the vectors Aj�i with A 2 AðFÞ span a dense
subspace in H .

The setQ is a closed convex set which has in contrast to
C a continuum of extremal points (see, for instance, [11]).
Bell inequalities define the boundary between C and Q.
The set Q can be characterized similarly by inequalities
that are linear in P, satisfied by all P 2 Q, and tight for at
least one P 2 Q. We call them Tsirelson inequalities. For
every linear expression in P, there is a maximum on C and
another, usually larger one onQwhich leads to a Tsirelson
inequality. Computational methods to derive such maximal
violations in Q are derived in Refs. [4,5]. For the Clauser-
Horne-Shimony-Holt expression in the ð2; 2; 2Þ case, these
maxima are 2 [6] and 2

ffiffiffi
2

p
[12], respectively. The value 4 is

achieved on the set of ‘‘nonsignaling correlations’’ P ,
defined by the property that the measurement of one party
does not change the probabilities observed by another.
Similar to C, P is generated by finitely many extremal
points [7]. It holds with proper inclusion C � Q � P .

Secure probability distributions.—We model the eaves-
dropper by another quantum party, whose measurements
must commute with all Fðx j sÞ. Accordingly, we call a
probability distribution P secure if P does not factorize,
i.e., Pðx j sÞ � Q

N
j¼1 Pjðxj j sjÞ, and for any quantum

representation and any operator E commuting with all
Fiðxi j siÞ

tr ½�EFðx j sÞ� ¼ trð�EÞPðx j sÞ: (2)

The operator E represents all possible measurements an
eavesdropper could perform. The requirement that P is not
a product is necessary to exclude classical deterministic
points, i.e., the extremal points of C, for which (2) is
satisfied trivially. As we will see, this excludes all proba-
bility distributions which can be realized in LHV models.
In device-independent cryptography, our definition en-

sures that an attack of an eavesdropper can never be better
than a classical guess. The number of extractable secure
bits by classical postprocessing can then be characterized
by the classical smooth min entropy [13].
Our first main result gives a geometric interpretation of

secure probability distributions: A probability distribution
P is secure if and only if it is extremal in QnC.
The argument is straightforward. Suppose P is secure

but not extremal. Then there exists a direct sum represen-
tation and a convex decomposition with P ¼ �P1 þ ð1�
�ÞP2, 0 � � � 1. Now use the definition (2) with E being
the projector onto the first or second summand to get P ¼
P1 and P ¼ P2, respectively. This shows that the convex
combination is indeed trivial and P is extremal. As all
extremal correlations in C are of product form, it follows
that P =2 C. Conversely, suppose P is extremal and P =2 C.
As before, we can conclude that P cannot be of product
form. Take any commuting 0 � E< 1 and set � ¼ trð�EÞ.
Define P1 ¼ ð1=�Þtr½�EFðx j sÞ� and P2 ¼ ½1=ð1�
�Þ�tr½�ð1� EÞFðx j sÞ� such that P ¼ �P1 þ ð1� �ÞP2.
As P is extremal, it holds that P ¼ P1, which is just
Eq. (2), so P is secure.
The decision of whether a given probability distribution

is secure has now been reduced to certifying extremality in
Q. This is, in general, a hard problem. Even in the ð2; 2; 2Þ
case, no simple algebraic constraints are known to verify
extremality of a given P. In this Letter, we will provide an
explicit, yet limited, certification scheme in example 3.
Algebraically secure probability distributions.—There

is a straightforward way to strengthen the definition of
secure probability distributions by extending the factoriza-
tion property to a larger set of observables. The reason is
that the stronger notion of security is often easier to verify.
A probability distribution P is called algebraically se-

cure if it is secure and for any quantum representation and
any operator E commuting with all Fiðxi j siÞ

tr ð�E ~FÞ ¼ trð�EÞtrð� ~FÞ; (3)

for all ~F 2 AðFÞ.
They are characterized as follows: A probability distri-

bution P is algebraically secure if and only if it is extremal
in QnC and has a unique quantum representation, up to
unitary equivalence.
A sketch of the proof goes as follows. Assume first that

P is algebraically secure and therefore extremal. Let � ¼
j�ih�j together with Fiðxi j siÞ and �0 ¼ j�0ih�0j with
F0
iðxi j siÞ be two representations of P on suitable Hilbert
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spaces H and H 0. Condition (3) implies that for all
corresponding operators ~F 2 AðFÞ and ~F0 2 AðF0Þ,
trð� ~FÞ ¼ trð�0 ~F0Þ. Otherwise, the direct sum representa-
tion with E chosen as the projector on the first or second
summand contradicts (3). Define then the unitary operator
U via U ~Fj�i ¼ ~F0j�0i, which transforms one representa-
tion into the other. Because j�i and j�0i are cyclic, U can
be extended to a unitary from H to H 0. Conversely,
assume that P is extremal and all representations are
unitarily equivalent. Let 0 � E � 1 be an operator com-

muting with all Fiðxi j siÞ. Since P is extremal, 1
trð�EÞ �ffiffiffiffi

E
p

�
ffiffiffiffi
E

p
together with the operators Fiðxi j siÞ is a valid

quantum representation of P. Hence, E ¼ 1, which
implies (3).

Secure vs algebraically secure.—It is now interesting to
identify cases for which the notions of secure and algebrai-
cally secure coincide. To formalize the question, we can
introduce a map � from all possible (unitary inequivalent)
quantum representations S [ ¼ SðN;M;KÞ] to the set of
probability distributionsQ. The set S can be considered as
a convex set, and the map � is linear and surjective but not
injective. The extremal points of S are exactly the irreduc-
ible quantum representations, which are defined by the
property that the only invariant subspaces of AðFÞ are
f0g and H . As shown in Ref. [14], each extremal proba-
bility distribution P 2 Q admits an irreducible quantum
representation. Hence, a secure probability distribution P
is algebraically secure if and only if ��1ðPÞ is exactly one
extremal point in S. In Fig. 1, the point (a) corresponds to
an algebraically secure probability distribution, while the
point (b) and the end points of the line (c) are secure but not
algebraically secure.

In the following, we discuss examples for which we
provide methods to find extremal points and criteria to
decide when they are also algebraically secure.

Example 1: The ðN; 2; 2Þ case.—The algebraic structure
of the ðN; 2; 2Þ case is quite well understood (see, e.g., [15]

and references therein). All irreducible quantum represen-
tations are in this case given on an N-qubit space H ¼
�N
i¼1C

2 with an arbitrary pure state c 2 H and measure-

ments, which are parameterized by N angles �1; . . . ; �N
(�i 2 ½0; ��). The measurements are given at site i as
Fið1; 1Þ ¼ 1

2 ð1þ �3Þ and Fið1; 2Þ ¼ 1
2 ½1þ sinð�iÞ�1þ

cosð�iÞ�3�, together with their complements Fið2; sÞ ¼
1� Fið1; sÞ. The �i denote the Pauli matrices, and we
omitted the identities on the tensor factors for the other
parties. This parametrization in f�ig and c is sufficient to
determine the whole convex body Q. An arbitrary P is a
direct sum of at most 4N þ 1 irreducible representations.
Compare Ref. [16] for an alternative deviation of these
results.
In order to find extremal points and test algebraic

uniqueness, we combine the above parametrization with
a maximization of a Tsirelson inequality. More explicitly,
for each functional given by coefficients fcðx j sÞg, we
can ask for the maximal quantum violation, i.e., Qc :¼
supP2Q

P
x;s cðx j sÞPðx j sÞ. In general, Qc can be com-

puted by a hierarchy of semidefinite programs [4,5].
Here, we follow another strategy by parameterizing
the corresponding operator C ¼ P

cðx j sÞFðx j sÞ ¼
Cð�1; . . . ; �NÞ by means of the irreducible representations.
The maximization of hc jCð�1; . . . ; �NÞjc i over all �i 2
½0; �Þ and c 2 C2N yieldsQc. Moreover, if there is exactly
one set of parameters �1; . . . ; �N and a unique state c for
which the maximum is attained, the corresponding proba-
bility distribution P is algebraically secure. In the case
where more than one possible choice of �1; . . . ; �N , c
leads to a maximal violation, we can determine the convex
span of the corresponding probability distributions. This
corresponds to the face given by the intersection of Q and
the hyperplane fP j Px;scðx j sÞPðx j sÞ ¼ Qcg. Extremal

points of that face are extremal points of Q and, thus,
secure probability distributions.
As a straightforward application, one can deduce that the

probability distributions leading to maximal violation of
Mermin’s inequalities [17] are algebraically secure.
Example 2: Certificate of extremality in the ð2; 2; 2Þ

case.—The idea of the foregoing example was to find
extremal P’s by maximizing a given Tsirelson expression.
Here, we start with a particular P and want to construct a
Tsirelson inequality saturated by P. If there exists such an
inequality which is not trivial, i.e., cannot be saturated by
any LHVmodel, and no other probability distribution inQ
saturates it (or alternatively that just one quantum repre-
sentation of P exists), extremality of P is certified.
We focus on the ð2; 2; 2Þ case and discuss a method for

how to construct a maximally violated Tsirelson expres-
sion for a given P. It comes along with a natural order of
complexity for which we solve the lowest order explicitly.
The main ingredient is again the parametrization of the
irreducible quantum representations by a state c 2 C2 �
C2 and two angles � ¼ ð�A; �BÞ (see the previous example)
for which we denote the obtained probability distribution

FIG. 1 (color online). Sketch of the set of quantum represen-
tations S (above) and the set of probability distributions Q
(below). An extremal probability distribution can correspond
either to a unique point (a) or to a face of S (b). Other faces
of S can be mapped to faces of Q (c). Not all extremal points of
S are also extremal for Q (d).
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by Pð�;c Þ. Because we are interested only in extremal P’s,
it is sufficient to consider Pð�;c Þ with a real c [10]. Since

we have dichotomic measurements, we can equivalently
work with �1 valued observables instead of measurement
operators. We denote the observables on Alice’s (Bob’s)
side by A1 and A2 (B1 and B2) and set A0 ¼ B0 ¼ 1.

Finding a Tsirelson inequality for Pð�;c Þ is equivalent

to the following task: Construct a positive operator T ¼P
kPkðAi; BjÞyPkðAi; BjÞ, with PkðAi; BjÞ polynomials in

Ai � Bj, i; j ¼ 0; 1; 2, such that (i) Pk½Aið�AÞ;
Bjð�BÞ�c 0 ¼ 0 for all k and (ii) T ¼ P

2
i;j¼0 tijAi � Bj for

all possible observables in H . Here, Aið�AÞ and Bjð�BÞ
denote the observables of the representation ð�; c Þ.
Condition (ii) implies that T can be interpreted as a linear
functional of P, (i) that it is 0 for Pð�;c Þ, and the ansatz for
T that T is a positive operator, and thus its associated
functional on P is positive for each P 2 Q.

In order to solve the problem, a constraint on the degree
of the polynomialsPk in the ansatz for T has to be imposed.
This introduces a natural hierarchy, where the order limits
the possible Pð�;c Þ for which the method succeeds. For

the simplest ansatz, Pk ¼
P

2
j¼1ð�kjAj � 1� �kj1 � BjÞ

(�kj; �kj 2 R), the P’s for which a Tsirelson inequality

can be constructed are exactly the ones which correspond
to a representation ð��

x ; �A; �BÞ with maximally entangled

state ��
x ¼ ð1= ffiffiffi

2
p Þðcosx;� sinx; sinx;� cosxÞ (x2½0;�Þ)

for which

sinð2xÞ sinð2x� �BÞ
sinð2x� �AÞ sinð2x� �A � �BÞ

< 0

holds. The corresponding Tsirelson inequality and the
derivation can be found in Ref. [10].

Example 3: The ð2;M; 2Þ case for full correlations.—
The difficulty of finding extremal points in the ð2;M; 2Þ
scenario can be considerably reduced, as it is sufficient to
consider only full correlations. This was shown by
Tsirelson in Ref. [12], where he characterized all extremal
points. In the following, let Ai and Bj, i; j 2 f1; . . . ;Mg,
denote �1 valued observables located by Alice and Bob,
respectively, and � a density operator. The set of quantum
correlations Qcor is given by all correlation tables cij ¼
trðAiBj�Þ which can be obtained by means of a quantum

representation. In Ref. [12] it was proven that all quantum
representations of an extremal correlation table which is
not deterministic have uniform marginal distributions
trðAi�Þ ¼ trðBj�Þ ¼ 0. Thus, nondeterministic extremal

correlations in Qcor correspond to secure probability dis-
tributions inQ. Furthermore, an extremal correlation table
which allows just one quantum representation gives rise to
an algebraically secure point.

For every correlation table cij exists a so-called c sys-

tem, that is, a collection of vectors xi, yj (i; j 2 f1; . . . ;Mg)
with kxik � 1, kyjk � 1 in an Euclidian space with

dimension M, such that cij ¼ hxi; yji. If P is extremal,

the corresponding c systems are isometric to each other,
kxik ¼ kyjk ¼ 1, and the linear hulls of the fxig and fyjg
coincide. Calling the dimension of the linear hull the rank r
of the c system, it further follows that fxi � xi; yj � yjg
span the symmetric subspace of Rr � Rr. The following

inequalities hold: r � M, r � �1=2þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=4þ 4M

p
, and

rðrþ 1Þ=2 � 2M� 1. There are two cases to be distin-
guished. For c systems with even rank, the representation
is unique (up to unitary equivalence), while for c systems
with odd rank, there are exactly two nonequivalent
representations.
With this, the question of secure versus algebraically

secure is equivalent to determining the rank of the c system
which corresponds to the given correlation table.
According to the inequalities above, it follows directly
that all probability distributions in the ð2; 2; 2Þ and
ð2; 3; 2Þ cases which correspond to nonclassical extremal
correlations in Qcor are algebraically secure.
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