3,259 research outputs found

    Effective electro-optical modulation with high extinction ratio by a graphene-silicon microring resonator

    Full text link
    Graphene opens up for novel optoelectronic applications thanks to its high carrier mobility, ultra-large absorption bandwidth, and extremely fast material response. In particular, the opportunity to control optoelectronic properties through tuning of Fermi level enables electro-optical modulation, optical-optical switching, and other optoelectronics applications. However, achieving a high modulation depth remains a challenge because of the modest graphene-light interaction in the graphene-silicon devices, typically, utilizing only a monolayer or few layers of graphene. Here, we comprehensively study the interaction between graphene and a microring resonator, and its influence on the optical modulation depth. We demonstrate graphene-silicon microring devices showing a high modulation depth of 12.5 dB with a relatively low bias voltage of 8.8 V. On-off electro-optical switching with an extinction ratio of 3.8 dB is successfully demonstrated by applying a square-waveform with a 4 V peak-to-peak voltage.Comment: 12 pages, including 7 figure

    Enhanced electron correlations in the new binary stannide PdSn4: a homologue of the Dirac nodal arc semimetal PtSn4

    Get PDF
    The advent of nodal-line semi-metals, i.e. systems in which the conduction and valence bands cross each other along a closed trajectory (line or loop) inside the Brillouin zone, has opened up a new arena for the exploration of topological condensed matter in which, due to a vanishing density of states near the Fermi level, electron correlation effects may also play an important role. In spite of this conceptual richness however, material realization of nodal-line (loop) fermions is rare, with PbTaSe2, ZrSiS and PtSn4 the only promising known candidates. Here we report the synthesis and physical properties of a new compound PdSn4 that is isostructural with PtSn4 yet possesses quasiparticles with significantly enhanced effective masses. In addition, PdSn4 displays an unusual polar angular magnetoresistance which at a certain field orientation, varies linearly with field up to 55 Tesla. Our study suggests that, in association with its homologue PtSn4 whose low-lying excitations were recently claimed to possess Dirac node arcs, PdSn4 may be a promising candidate in the search for novel topological states with enhanced correlation effects.Comment: 6 figures, 1 tabl

    DIGITAL SOIL MAPPING FOR SMART AGRICULTURE: THE SOLIM METHOD AND SOFTWARE PLATFORMS

    Get PDF
    The key challenges faced by many of the existing digital soil mapping (DSM) techniques are the rigid requirements on the size of soil samples to extract the relationships needed and on the stationarity of the extracted relationships. These requirements limit the application of these DSM techniques. This paper provides an overview of the SoLIM approach and an introduction to the operation of SoLIM through the software platforms available. SoLIM is based on the Third Law of Geography, which calls for the comparison of similarity in geographic (environmental) configuration of a prototype and an unsampled location and then use this similarity to predict the value of a soil property at a given location. DSM under SoLIM approach removes requirements on the sample size and the stationarity assumption. In addition, the uncertainty computed based on the similarities can be used to improve the efficiency of error reduction efforts. The SoLIM approach has been implemented in two platforms: SoLIM Solutions and CyberSoLIM. The theoretical foundation and the availability of software platforms under SoLIM make DSM possible and convenient over large and complex geographic regions

    Effects of the littlest Higgs model with T-parity on Higgs boson production at high energy e+ee^{+}e^{-} colliders

    Get PDF
    The Higgs boson production processes e+eZHe^{+}e^{-}\to ZH, e+eνeˉνeHe^{+}e^{-}\to \bar{\nu_{e}}\nu_{e}H, and e+ettˉHe^{+}e^{-}\to t\bar{t}H are very important for studying Higgs boson properties and further testing new physics beyond the standard model(SMSM) in the high energy linear e+ee^{+}e^{-} collider(ILCILC). We estimate the contributions of the littlest Higgs model with T-parity(LHTLHT model) to these processes and find that the LHTLHT model can generate significantly corrections to the production cross sections of these processes. We expect the possible signals of the LHTLHT model can be detected via these processes in the future ILCILC experiments.Comment: 9 pages, 2 figures, references adde

    Using biomarkers to predict TB treatment duration (Predict TB): a prospective, randomized, noninferiority, treatment shortening clinical trial

    Get PDF
    Background : By the early 1980s, tuberculosis treatment was shortened from 24 to 6 months, maintaining relapse rates of 1-2%. Subsequent trials attempting shorter durations have failed, with 4-month arms consistently having relapse rates of 15-20%. One trial shortened treatment only among those without baseline cavity on chest x-ray and whose month 2 sputum culture converted to negative. The 4-month arm relapse rate decreased to 7% but was still significantly worse than the 6-month arm (1.6%, P<0.01).  We hypothesize that PET/CT characteristics at baseline, PET/CT changes at one month, and markers of residual bacterial load will identify patients with tuberculosis who can be cured with 4 months (16 weeks) of standard treatment.Methods: This is a prospective, multicenter, randomized, phase 2b, noninferiority clinical trial of pulmonary tuberculosis participants. Those eligible start standard of care treatment. PET/CT scans are done at weeks 0, 4, and 16 or 24. Participants who do not meet early treatment completion criteria (baseline radiologic severity, radiologic response at one month, and GeneXpert-detectable bacilli at four months) are placed in Arm A (24 weeks of standard therapy). Those who meet the early treatment completion criteria are randomized at week 16 to continue treatment to week 24 (Arm B) or complete treatment at week 16 (Arm C). The primary endpoint compares the treatment success rate at 18 months between Arms B and C.Discussion: Multiple biomarkers have been assessed to predict TB treatment outcomes. This study uses PET/CT scans and GeneXpert (Xpert) cycle threshold to risk stratify participants. PET/CT scans are not applicable to global public health but could be used in clinical trials to stratify participants and possibly become a surrogate endpoint. If the Predict TB trial is successful, other immunological biomarkers or transcriptional signatures that correlate with treatment outcome may be identified. TRIAL REGISTRATION: NCT02821832

    Multi-Band Exotic Superconductivity in the New Superconductor Bi4O4S3

    Full text link
    Resistivity, Hall effect and magnetization have been investigated on the new superconductor Bi4O4S3. A weak insulating behavior has been induced in the normal state when the superconductivity is suppressed. Hall effect measurements illustrate clearly a multiband feature dominated by electron charge carriers, which is further supported by the magnetoresistance data. Interestingly, a kink appears on the temperature dependence of resistivity at about 4 K at all high magnetic fields when the bulk superconductivity is completely suppressed. This kink can be well traced back to the upper critical field Hc2(T) in the low field region, and is explained as the possible evidence of residual Cooper pairs on the one dimensional chains.Comment: 5 pages, 5 figure
    corecore