115,960 research outputs found

    Complete time-dependent treatment of a three-level system

    Get PDF
    Both unitary evolution and the effects of dissipation and decoherence for a general three-level system are of widespread interest in quantum optics, molecular physics, and elsewhere. A previous paper presented a technique for solving the time-dependent operator equations involved but under certain restrictive conditions. We now extend our results to a general three-level system with arbitrary time-dependent Hamiltonians and Lindblad operators. Analytical handling of the SU(3) algebra of the eight operators involved leaves behind a set of coupled first-order differential equations for classical functions. Solution of this set gives a complete solution of the quantum problem, without having to invoke rotating-wave or other approximations. Numerical illustrations are given.Comment: 1 tar.gz file containing a Tex and four eps figure files; unzip with command gunzip RZPRA05.tar.g

    Constraint on the early Universe by relic gravitational waves: From pulsar timing observations

    Full text link
    Recent pulsar timing observations by the Parkers Pulsar Timing Array and European Pulsar Timing Array teams obtained the constraint on the relic gravitational waves at the frequency f∗=1/yrf_*=1/{\rm yr}, which provides the opportunity to constrain H∗H_*, the Hubble parameter when these waves crossed the horizon during inflation. In this paper, we investigate this constraint by considering the general scenario for the early Universe: we assume that the effective (average) equation-of-state ww before the big bang nucleosynthesis stage is a free parameter. In the standard hot big-bang scenario with w=1/3w=1/3, we find that the current PPTA result follows a bound H_*\leq 1.15\times10^{-1}\mpl, and the EPTA result follows H_*\leq 6.92\times10^{-2}\mpl. We also find that these bounds become much tighter in the nonstandard scenarios with w>1/3w>1/3. When w=1w=1, the bounds become H_*\leq5.89\times10^{-3}\mpl for the current PPTA and H_*\leq3.39\times10^{-3}\mpl for the current EPTA. In contrast, in the nonstandard scenario with w=0w=0, the bound becomes H_*\leq7.76\mpl for the current PPTA.Comment: 8 pages, 3 figures, 1 table, PRD in pres

    Accurate Modelling of Left-Handed Metamaterials Using Finite-Difference Time-Domain Method with Spatial Averaging at the Boundaries

    Full text link
    The accuracy of finite-difference time-domain (FDTD) modelling of left-handed metamaterials (LHMs) is dramatically improved by using an averaging technique along the boundaries of LHM slabs. The material frequency dispersion of LHMs is taken into account using auxiliary differential equation (ADE) based dispersive FDTD methods. The dispersive FDTD method with averaged permittivity along the material boundaries is implemented for a two-dimensional (2-D) transverse electric (TE) case. A mismatch between analytical and numerical material parameters (e.g. permittivity and permeability) introduced by the time discretisation in FDTD is demonstrated. The expression of numerical permittivity is formulated and it is suggested to use corrected permittivity in FDTD simulations in order to model LHM slabs with their desired parameters. The influence of switching time of source on the oscillation of field intensity is analysed. It is shown that there exists an optimum value which leads to fast convergence in simulations.Comment: 17 pages, 7 figures, submitted to Journal of Optics A Nanometa special issu

    General Design Bayesian Generalized Linear Mixed Models

    Get PDF
    Linear mixed models are able to handle an extraordinary range of complications in regression-type analyses. Their most common use is to account for within-subject correlation in longitudinal data analysis. They are also the standard vehicle for smoothing spatial count data. However, when treated in full generality, mixed models can also handle spline-type smoothing and closely approximate kriging. This allows for nonparametric regression models (e.g., additive models and varying coefficient models) to be handled within the mixed model framework. The key is to allow the random effects design matrix to have general structure; hence our label general design. For continuous response data, particularly when Gaussianity of the response is reasonably assumed, computation is now quite mature and supported by the R, SAS and S-PLUS packages. Such is not the case for binary and count responses, where generalized linear mixed models (GLMMs) are required, but are hindered by the presence of intractable multivariate integrals. Software known to us supports special cases of the GLMM (e.g., PROC NLMIXED in SAS or glmmML in R) or relies on the sometimes crude Laplace-type approximation of integrals (e.g., the SAS macro glimmix or glmmPQL in R). This paper describes the fitting of general design generalized linear mixed models. A Bayesian approach is taken and Markov chain Monte Carlo (MCMC) is used for estimation and inference. In this generalized setting, MCMC requires sampling from nonstandard distributions. In this article, we demonstrate that the MCMC package WinBUGS facilitates sound fitting of general design Bayesian generalized linear mixed models in practice.Comment: Published at http://dx.doi.org/10.1214/088342306000000015 in the Statistical Science (http://www.imstat.org/sts/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Electrical conductivity and thermal dilepton rate from quenched lattice QCD

    Get PDF
    We report on a continuum extrapolation of the vector current correlation function for light valence quarks in the deconfined phase of quenched QCD. This is achieved by performing a systematic analysis of the influence of cut-off effects on light quark meson correlators at T≃1.45TcT\simeq 1.45 T_c using clover improved Wilson fermions. We discuss resulting constraints on the electrical conductivity and the thermal dilepton rate in a quark gluon plasma. In addition new results at 1.2 and 3.0 TcT_c will be presented.Comment: 4 pages, 6 eps figures, to appear in the proceedings of Quark Matter 2011, 23-28 May 2011, Annecy, Franc

    Liquid crystal phases of ultracold dipolar fermions on a lattice

    Full text link
    Motivated by the search for quantum liquid crystal phases in a gas of ultracold atoms and molecules, we study the density wave and nematic instabilities of dipolar fermions on the two-dimensional square lattice (in the x−yx-y plane) with dipoles pointing to the zz direction. We determine the phase diagram using two complimentary methods, the Hatree-Fock mean field theory and the linear response analysis of compressibility. Both give consistent results. In addition to the staggered (π\pi, π\pi) density wave, over a finite range of densities and hopping parameters, the ground state of the system first becomes nematic and then smectic, when the dipolar interaction strength is increased. Both phases are characterized by the same broken four-fold (C4_4) rotational symmetry. The difference is that the nematic phase has a closed Fermi surface but the smectic does not. The transition from the nematic to the smectic phase is associated with a jump in the nematic order parameter. This jump is closely related to the van Hove singularities. We derive the kinetic equation for collective excitations in the normal isotropic phase and find that the zero sound mode is strongly Landau damped and thus is not a well defined excitation. Experimental implications of our results are discussed.Comment: 8 pages, 4 figures; Erratum added in the appendi

    The two-dimensional frustrated Heisenberg model on the orthorhombic lattice

    Full text link
    We discuss new high-field magnetization data recently obtained by Tsirlin et al. for layered vanadium phosphates in the framework of the square-lattice model. Our predictions for the saturation fields compare exceptionally well to the experimental findings, and the strong bending of the curves below saturation agrees very well with the experimental field dependence. Furthermore we discuss the remarkably good agreement of the frustrated Heisenberg model on the square lattice in spite of the fact that the compounds described with this model actually have a lower crystallographic symmetry. We present results from our calculations on the thermodynamics of the model on the orthorhombic (i.e., rectangular) lattice, in particular the temperature dependence of the magnetic susceptibility. This analysis also sheds light on the discussion of magnetic frustration and anisotropy of a class of iron pnictide parent compounds, where several alternative suggestions for the magnetic exchange models were proposed.Comment: 4 pages, 3 figures, accepted for publication in Journal of Physics: Conference Serie
    • …
    corecore