3,491 research outputs found
Group-cluster merging and the formation of starburst galaxies
A significant fraction of clusters of galaxies are observed to have
substructure, which implies that merging between clusters and subclusters is a
rather common physical process of cluster formation.
It still remains unclear how cluster merging affects the evolution of cluster
member galaxies.
We report the results of numerical simulations, which show the dynamical
evolution of a gas-rich late-type spiral in a merger between a small group of
galaxies and a cluster. The simulations demonstrate that time-dependent tidal
gravitational field of the merging excites non-axisymmetric structure of the
galaxy, subsequently drives efficient transfer of gas to the central region,
and finally triggers a secondary starburst.
This result provides not only a new mechanism of starbursts but also a close
physical relationship between the emergence of starburst galaxies and the
formation of substructure in clusters. We accordingly interpret post-starburst
galaxies located near substructure of the Coma cluster as one observational
example indicating the global tidal effects of group-cluster merging.
Our numerical results furthermore suggest a causal link between the observed
excess of blue galaxies in distant clusters and cluster virialization process
through hierarchical merging of subclusters.Comment: 5 pages 3 color figures, ApJL in pres
Structure Formation Inside Triaxial Dark Matter Halos: Galactic Disks, Bulges and Bars
We investigate the formation and evolution of galactic disks immersed in
assembling live DM halos. Disk/halo components have been evolved from the
cosmological initial conditions and represent the collapse of an isolated
density perturbation. The baryons include gas (which participates in star
formation [SF]) and stars. The feedback from the stellar energy release onto
the ISM has been implemented. We find that (1) The growing triaxial halo figure
tumbling is insignificant and the angular momentum (J) is channeled into the
internal circulation; (2) Density response of the disk is out of phase with the
DM, thus diluting the inner halo flatness and washing out its prolateness; (3)
The total J is neathly conserved, even in models accounting for feedback; (4)
The specific J for the DM is nearly constant, while that for baryons is
decreasing; (5) Early stage of disk formation resembles the cat's cradle -- a
small amorphous disk fueled via radial string patterns; (6) The initially
puffed up gas component in the disk thins when the SF rate drops below ~5
Mo/yr; (7) About 40%-60% of the baryons remain outside the SF region; (8)
Rotation curves appear to be flat and account for the observed disk/halo
contributions; (9) A range of bulge-dominated to bulgeless disks was obtained;
Lower density threshold for SF leads to a smaller, thicker disk; Gravitational
softening in the gas has a substantial effect on various aspects of galaxy
evolution and mimics a number of intrinsic processes within the ISM; (10) The
models are characterized by an extensive bar-forming activity; (11) Nuclear
bars, dynamically coupled and decoupled form in response to the gas inflow
along the primary bars.Comment: 18 pages, 16 figures, accepted by the Astrophysical Journal. Minor
revisions. The high-resolution figures can be found at
http://www.pa.uky.edu/~shlosman/research/galdyn/figs07a
Angular Momentum Profiles of Warm Dark Matter Halos
We compare the specific angular momentum profiles of virialized dark halos in
cold dark matter (CDM) and warm dark matter (WDM) models using high-resolution
dissipationless simulations. The simulations were initialized using the same
set of modes, except on small scales, where the power was suppressed in WDM
below the filtering length. Remarkably, WDM as well as CDM halos are
well-described by the two-parameter angular momentum profile of Bullock et al.
(2001), even though the halo masses are below the filtering scale of the WDM.
Although the best-fit shape parameters change quantitatively for individual
halos in the two simulations, we find no systematic variation in profile shapes
as a function of the dark matter type. The scatter in shape parameters is
significantly smaller for the WDM halos, suggesting that substructure and/or
merging history plays a role producing scatter about the mean angular momentum
distribution, but that the average angular momentum profiles of halos originate
from larger-scale phenomena or a mechanism associated with the virialization
process. The known mismatch between the angular momentum distributions of dark
halos and disk galaxies is therefore present in WDM as well as CDM models. Our
WDM halos tend to have a less coherent (more misaligned) angular momentum
structure and smaller spin parameters than do their CDM counterparts, although
we caution that this result is based on a small number of halos.Comment: 5 pages, 1 figure, Submitted to ApJ
Star Formation, Supernovae Feedback and the Angular Momentum Problem in Numerical CDM Cosmogony: Half Way There?
We present a smoothed particle hydrodynamic (SPH) simulation that reproduces
a galaxy that is a moderate facsimile of those observed. The primary failing
point of previous simulations of disk formation, namely excessive transport of
angular momentum from gas to dark matter, is ameliorated by the inclusion of a
supernova feedback algorithm that allows energy to persist in the model ISM for
a period corresponding to the lifetime of stellar associations. The inclusion
of feedback leads to a disk at a redshift , with a specific angular
momentum content within 10% of the value required to fit observations. An
exponential fit to the disk baryon surface density gives a scale length within
17% of the theoretical value. Runs without feedback, with or without star
formation, exhibit the drastic angular momentum transport observed elsewhere.Comment: 4 pages, 3 figures, accepted for publication in ApJ Letter
Starbursts in multiple galaxy mergers
We numerically investigate stellar and gaseous dynamical evolution of mergers
between five identical late-type disk galaxies with the special emphasis on
star formation history and chemical evolution of multiple galaxy mergers. We
found that multiple encounter and merging can trigger repetitive massive
starbursts (typically 100 ) owing to the
strong tidal disturbance and the resultant gaseous dissipation during merging.
The magnitude of the starburst is found to depend on initial virial ratio
(i.e., the ratio of total kinematical energy to total potential energy) such
that the maximum star formation rate is larger for the merger with smaller
virial ratio. Furthermore we found that the time interval between the epochs of
the triggered starbursts is longer for the merger with the larger virial ratio.
The remnant of a multiple galaxy merger with massive starbursts is found to
have metal-poor gaseous halo that is formed by tidal stripping during the
merging. We accordingly suggest that metal-poor gaseous halo in a field
elliptical galaxy is a fossil record of the past multiple merging events for
the galaxy.Comment: 23 pages 16 figures,2000,ApJ,545 in press. For all ps figures, see
http://newt.phys.unsw.edu.au/~bekki/res.dir/paper.dir/mul.dir/fig.tar.g
Star Clusters in Virgo and Fornax Dwarf Irregular Galaxies
We present the results of a search for clusters in dwarf irregular galaxies
in the Virgo and Fornax Cluster using HST WFPC2 snapshot data. The galaxy
sample includes 28 galaxies, 11 of which are confirmed members of the Virgo and
Fornax clusters. In the 11 confirmed members, we detect 237 cluster candidates
and determine their V magnitudes, V-I colors and core radii. After statistical
subtraction of background galaxies and foreground stars, most of the cluster
candidates have V-I colors of -0.2 and 1.4, V magnitudes lying between 20 and
25th magnitude and core radii between 0 and 6 pc. Using H-alpha observations,
we find that 26% of the blue cluster candidates are most likely HII regions.
The rest of the cluster candidates are most likely massive (>10^4 Msol) young
and old clusters. A comparison between the red cluster candidates in our sample
and the Milky Way globular clusters shows that they have similar luminosity
distributions, but that the red cluster candidates typically have larger core
radii. Assuming that the red cluster candidates are in fact globular clusters,
we derive specific frequencies (S_N) ranging from ~0-9 for the galaxies.
Although the values are uncertain, seven of the galaxies appear to have
specific frequencies greater than 2. These values are more typical of
ellipticals and nucleated dwarf ellipticals than they are of spirals or Local
Group dwarf irregulars.Comment: 46 pages, 14 figures, 3 tables, accepted by AJ. Higher quality PS
version of entire paper available at
http://www.astro.washington.edu/seth/dirr_gcs.htm
Tidal Torques and the Orientation of Nearby Disk Galaxies
We use numerical simulations to investigate the orientation of the angular
momentum axis of disk galaxies relative to their surrounding large scale
structure. We find that this is closely related to the spatial configuration at
turnaround of the material destined to form the galaxy, which is often part of
a coherent two-dimensional slab criss-crossed by filaments. The rotation axis
is found to align very well with the intermediate principal axis of the inertia
momentum tensor at this time. This orientation is approximately preserved
during the ensuing collapse, so that the rotation axis of the resulting disk
ends up lying on the plane traced by the protogalactic material at turnaround.
This suggests a tendency for disks to align themselves so that their rotation
axis is perpendicular to the minor axis of the structure defined by surrounding
matter. One example of this trend is provided by our own Galaxy, where the
Galactic plane is almost at right angles with the supergalactic plane (SGP)
drawn by nearby galaxies; indeed, the SGP latitude of the North Galactic Pole
is just 6 degrees. We have searched for a similar signature in catalogs of
nearby disk galaxies, and find a significant excess of edge-on spirals (for
which the orientation of the disk rotation axis may be determined
unambiguously) highly inclined relative to the SGP. This result supports the
view that disk galaxies acquire their angular momentum as a consequence of
early tidal torques acting during the expansion phase of the protogalactic
material.Comment: 5 pages, 2 figures, accepted for publication in ApJ
On the distribution of initial masses of stellar clusters inferred from synthesis models
The fundamental properties of stellar clusters, such as the age or the total
initial mass in stars, are often inferred from population synthesis models. The
predicted properties are then used to constrain the physical mechanisms
involved in the formation of such clusters in a variety of environments.
Population synthesis models cannot, however, be applied blindy to such systems.
We show that synthesis models cannot be used in the usual straightforward way
to small-mass clusters (say, M < few times 10**4 Mo). The reason is that the
basic hypothesis underlying population synthesis (a fixed proportionality
between the number of stars in the different evolutionary phases) is not
fulfilled in these clusters due to their small number of stars. This incomplete
sampling of the stellar mass function results in a non-gaussian distribution of
the mass-luminosity ratio for clusters that share the same evolutionary
conditions (age, metallicity and initial stellar mass distribution function).
We review some tests that can be carried out a priori to check whether a given
cluster can be analysed with the fully-sampled standard population synthesis
models, or, on the contrary, a probabilistic framework must be used. This leads
to a re-assessment in the estimation of the low-mass tail in the distribution
function of initial masses of stellar clusters.Comment: 5 pages, 1 figure, to appear in ``Young Massive Star Clusters -
Initial Conditions and Environments'', 2008, Astrophysics & Space Science,
eds. E. Perez, R. de Grijs, R. M. Gonzalez Delgad
A Simple Model for the Absorption of Starlight by Dust in Galaxies
We present a new model to compute the effects of dust on the integrated
spectral properties of galaxies, based on an idealized prescription of the main
features of the interstellar medium (ISM). The model includes the ionization of
HII regions in the interiors of the dense clouds in which stars form and the
influence of the finite lifetime of these clouds on the absorption of
radiation. We compute the production of emission lines and the absorption of
continuum radiation in the HII regions and the subsequent transfer of line and
continuum radiation in the surrounding HI regions and the ambient ISM. This
enables us to interpret simultaneously all the observations of a homogeneous
sample of nearby UV-selected starburst galaxies, including the ratio of far-IR
to UV luminosities, the ratio of Halpha to Hbeta luminosities, the Halpha
equivalent width, and the UV spectral slope. We show that the finite lifetime
of stellar birth clouds is a key ingredient to resolve an apparent discrepancy
between the attenuation of line and continuum photons in starburst galaxies. In
addition, we find that an effective absorption curve proportional to
lambda^-0.7 reproduces the observed relation between the ratio of far-IR to UV
luminosities and the UV spectral slope. We interpret this relation most simply
as a sequence in the overall dust content of the galaxies. The shallow
wavelength dependence of the effective absorption curve is compatible with the
steepness of known extinction curves if the dust has a patchy distribution. In
particular, we find that a random distribution of discrete clouds with optical
depths similar to those in the Milky Way provides a consistent interpretation
of all the observations. Our model for absorption can be incorporated easily
into any population synthesis model. (abridged)Comment: To appear in the 2000 July 20 issue of the Astrophysical Journal; 19
pages with 13 embedded PS figures (emulateapj5.sty
- …
