8,922 research outputs found
Combining technologies to create bioactive hybrid scaffolds for bone tissue engineering
Combining technologies to engineer scaffolds that can offer physical and chemical cues to cells is an attractive approach in tissue engineering and regenerative medicine. In this study, we have fabricated polymer-ceramic hybrid scaffolds for bone regeneration by combining rapid prototyping (RP), electrospinning (ESP) and a biomimetic coating method in order to provide mechanical support and a physico-chemical environment mimicking both the organic and inorganic phases of bone extracellular matrix (ECM). Poly(ethylene oxide terephthalate)-poly(buthylene terephthalate) (PEOT/PBT) block copolymer was used to produce three dimensional scaffolds by combining 3D fiber (3DF) deposition, and ESP, and these constructs were then coated with a Ca-P layer in a simulated physiological solution. Scaffold morphology and composition were studied using scanning electron microscopy (SEM) coupled to energy dispersive X-ray analyzer (EDX) and Fourier Tranform Infrared Spectroscopy (FTIR). Bone marrow derived human mesenchymal stromal cells (hMSCs) were cultured on coated and uncoated 3DF and 3DF + ESP scaffolds for up to 21 d in basic and mineralization medium and cell attachment, proliferation, and expression of genes related to osteogenesis were assessed. Cells attached, proliferated and secreted ECM on all the scaffolds. There were no significant differences in metabolic activity among the different groups on days 7 and 21. Coated 3DF scaffolds showed a significantly higher DNA amount in basic medium at 21 d compared with the coated 3DF + ESP scaffolds, whereas in mineralization medium, the presence of coating in 3DF+ESP scaffolds led to a significant decrease in the amount of DNA. An effect of combining different scaffolding technologies and material types on expression of a number of osteogenic markers (cbfa1, BMP-2, OP, OC and ON) was observed, suggesting the potential use of this approach in bone tissue engineerin
modeling the influence of stress triaxiality on the failure strain of nodular cast iron microstructures
Abstract In this study the fracture behavior of different cast iron microstructures subjected to tensile loading under different triaxialities is simulated by a finite element, 3-D Reference Volume Element approach. Three ferritic/pearlitic heterogeneous matrixes are considered which are representative of the class material grades for strength and ductility. Isotropic ductile and shear damage models are considered for the matrix constituents as concurrent damage mechanisms at the microscale, while graphite nodules are considered as voids acting as stress concentrators. Numerical results confirm experimental findings about local strain distribution and damage accumulation, and reproduce the engineering macroscopic behavior. The stress triaxiality is found to play a strong effect on the failure strain, extending the potentialities of this RVE modeling approach
Controlled surface initiated polymerization of N-isopropylacrylamide from polycaprolactone substrates for regulating cell attachment and detachment
Poly(ε-caprolactone) (PCL) substrates were modified with thermoresponsive poly(N-isopropylacrylamide) (PNIPAM) brushes to direct and control cellular attachment and detachment. Prior to brush growth, the surface of PCL was activated by a diamine to allow for initiator coupling. Infrared spectra taken before and after cell culturing demonstrated the covalently attached nature of the PNIPAM brushes. PCL is a biocompatible polymer and to prove that the modifications described above did not change this characteristic property, a cell attachment/detachment study was carried out. The modified substrates showed a lower cell attachment when compared to PCL alone and to PCL films modified with the initiator. The possibility to detach the cells in the form of a sheet was proved using PNIPAM-modified PCL films by lowering the temperature to 25 °C. No relevant detachment was shown by the unmodified or by the initiator modified surfaces. This confirmed that the detachment was temperature dependent and not connected to other factors such as polymer swelling. These functionalized polymeric films can find applications as smart cell culture systems in regenerative medicine applications
Comparison of tensile strength and fracture toughness of co-bonded and cold-bonded carbon fiber laminate-aluminum adhesive joints
The purpose of this work is to compare the co-bonding vs. cold-bonding route on the adhesive joint performance of a CFRP (Carbon Fiber Reinforced Polymer) laminate–aluminum connection. In particular, the overlap shear, tensile strength and Mode I and Mode II fracture toughness will be evaluated. The adhesives for co-bonding and cold-bonding are, respectively, a thermosetting modified epoxy, unsupported structural film and a two-component epoxy adhesive, chosen as representative of applications in the high-performance/race car field. The emerging trend is that, in tensile e Mode I fracture tests, the failure path is predominantly in the composite. Mode II fracture tests instead resulted in a cohesive fracture, meaning that, under pure shear loading, the weakest link may not be the composite. The lap-shear tests are placed midway (cohesive failure for co-bonding and composite delamination for cold-bonding, respectively), probably due to the different peel stress values related to the different adhesive Young’s modulus. The exploitation of the full capacity of the adhesive joint, hence the possibility of highlighting better, different performances of co-bonding vs. cold-bonding, would require consistent improvement of the out-of-plane strength of the CFRP laminate and/or to someway redistribute the peel stress on the bondline
influence of material and manufacturing technology on the failure behavior of composite laminate bonded joints
Abstract The purpose of this work is to evaluate the influence of co-lamination vs. co-bonding on the failure behavior, and namely the fracture toughness, of carbon fibre reinforced (CFR) composite laminate joints in order to assess comparatively their performance. Since the strength of the laminate and ply texture are parameters affecting the strength of the joint, the comparison is extended to two different types of CFR pre-preg fibers, a satin T1100 with 2573 Nanoalloy® epoxy resin supplied by Toray and a twill T700 with ER450 toughened epoxy resin supplied by CIT, Toray group, representative of two different fields of application, racing and automotive, respectively
comparative investigation of mode i and ii fracture toughness of directly cured cfrp and co cured bonded cfrp joints
Abstract Adhesive bonding is the elective joining system between Carbon-Fiber Reinforced Polymer (CFRP) parts because, with respect to fastening, it allows a large connection area, no additional parts (hence weight saving) and no need to drill holes into the composite, that is always detrimental for the strength due to the possibility of developing damage. However, the choice of bonding CFRP should be evaluated as alternative to direct curing in terms of strength and durability, compared to cost and manufacturing time and complexity. In this work, a comparison between directly cured and co-cured, bonded CFRP is done with respect to mode I and mode II fracture toughness, in order to understand whether bonding guarantees the same performance of a co-cured composite part
Additive manufactured, highly resilient, elastic, and biodegradable poly(ester)urethane scaffolds with chondroinductive properties for cartilage tissue engineering
Articular cartilage was thought to be one of the first tissues to be successfully engineered. Despite the avascular and non-innervated nature of the tissue, the cells within articular cartilage - chondrocytes - account for a complex phenotype that is difficult to be maintained in vitro. The use of bone marrow-derived stromal cells (BMSCs) has emerged as a potential solution to this issue. Differentiation of BMSCs toward stable and non-hypertrophic chondrogenic phenotypes has also proved to be challenging. Moreover, hyaline cartilage presents a set of mechanical properties - relatively high Young's modulus, elasticity, and resilience - that are difficult to reproduce. Here, we report on the use of additive manufactured biodegradable poly(ester)urethane (PEU) scaffolds of two different structures (500 mu m pore size and 90 degrees or 60 degrees deposition angle) that can support the loads applied onto the knee while being highly resilient, with a permanent deformation lower than 1% after 10 compression-relaxation cycles. Moreover, these scaffolds appear to promote BMSC differentiation, as shown by the deposition of glycosaminoglycans and collagens (in particular collagen II). At gene level, BMSCs showed an upregulation of chondrogenic markers, such as collagen II and the Sox trio, to higher or similar levels than that of traditional pellet cultures, with a collagen II/collagen I relative expression of 2-3, depending on the structure of the scaffold. Moreover, scaffolds with different pore architectures influenced the differentiation process and the final BMSC phenotype. These data suggest that additive manufactured PEU scaffolds could be good candidates for cartilage tissue regeneration in combination with microfracture interventions.</p
Vocal communication regulates sibling competition over food stock
Animals resolve conflicts over the share of resources by competing physically or signalling motivation with honest signals of need. In some species, young siblings vocally signal to each other their hunger level and the most vocal individual deters its siblings from competing for the non-divisible food item delivered at the next parental visit. This so-called sibling negotiation for forthcoming food has been studied only in this context. It therefore remains unclear whether siblings could also negotiate access to a pool of divisible resources, a situation that is similar to a group of individuals competing for an accessible food resource. To tackle this issue, we placed barn owl (Tyto alba) nestlings singly in artificial nests containing several mice, and we simulated the presence of a sibling calling at low or high rate using playback experiments. If nestling barn owls vocally negotiate over a divisible food stock, we propose the following two predictions. First, nestlings would vocally signal before eating from this stock of food, and second, numerous playback vocalizations would inhibit feeding. Accordingly, singleton nestlings vocalized just before consuming food stored in their artificial nest and they delayed the consumption of the food stock if hearing many playback calls. The production of such food-associated vocalizations has been observed in foraging adults in various birds and mammals, but never in young animals and when resource is divisible and easily accessible. Our study raises the possibility that vocal communication could evolve in a variety of competitive contexts.
We present here the first experimental evidence that sibling barn owls use food-associated vocalizations to compete over the preys stored in the nest. Owlets emit calls just before consuming an available food item and broadcasting calls induces nestlings to temporarily refrain from eating from the food stock. This raises the possibility that vocal communication can mediate the share of a food stock accessible to all competitors
- …