2,028 research outputs found

    Lattice Green Function (at 0) for the 4d Hypercubic Lattice

    Full text link
    The generating function for recurrent Polya walks on the four dimensional hypercubic lattice is expressed as a Kampe-de-Feriet function. Various properties of the associated walks are enumerated.Comment: latex, 5 pages, Res. Report 1

    Green's function of a finite chain and the discrete Fourier transform

    Full text link
    A new expression for the Green's function of a finite one-dimensional lattice with nearest neighbor interaction is derived via discrete Fourier transform. Solution of the Heisenberg spin chain with periodic and open boundary conditions is considered as an example. Comparison to Bethe ansatz clarifies the relation between the two approaches.Comment: preprint of the paper published in Int. J. Modern Physics B Vol. 20, No. 5 (2006) 593-60

    Validation of Faecal NIRS for Monitoring the Diet of Confined and Grazing Goats

    Get PDF
    Goats are used for brush control and ecological management of Mediterranean grazing lands. Farmers are willing to cooperate with communities but they need an easy method to evaluate the daily intake of nutrients. A calibration of the chemical attributes of goats\u27 diets was set-up, based on faecal near infrared (NIR) spectra (Landau et al., 2004; Table 1). The accuracy of this methodology was estimated by using the standard error of cross-validation (SECV), which represents the variability in the difference between predicted and reference values when the equation is applied sequentially to subsets of data from the calibration data set. This procedure is justified in situations with calibration samples that are randomly selected from a natural population, but may give over-optimistic results, in particular if data are replicated. The standard error of prediction (SEP) represents the variability in the difference between predicted and reference values when the equation is applied to an external (i.e., not used in any step of the calibration) validation data set. (Naes et al., 2002). The aim of the present study was to test the robustness of predicting dietary CP, in vitro dry matter digestibility (IVDMD), and NDF percentages in goats\u27 diets, using faecal samples totally external to calibrations

    Coulomb Interactions via Local Dynamics: A Molecular--Dynamics Algorithm

    Full text link
    We derive and describe in detail a recently proposed method for obtaining Coulomb interactions as the potential of mean force between charges which are dynamically coupled to a local electromagnetic field. We focus on the Molecular Dynamics version of the method and show that it is intimately related to the Car--Parrinello approach, while being equivalent to solving Maxwell's equations with freely adjustable speed of light. Unphysical self--energies arise as a result of the lattice interpolation of charges, and are corrected by a subtraction scheme based on the exact lattice Green's function. The method can be straightforwardly parallelized using standard domain decomposition. Some preliminary benchmark results are presented.Comment: 8 figure

    The 6-vertex model of hydrogen-bonded crystals with bond defects

    Full text link
    It is shown that the percolation model of hydrogen-bonded crystals, which is a 6-vertex model with bond defects, is completely equivalent with an 8-vertex model in an external electric field. Using this equivalence we solve exactly a particular 6-vertex model with bond defects. The general solution for the Bethe-like lattice is also analyzed.Comment: 13 pages, 6 figures; added references for section

    FIBONACCI SUPERLATTICES OF NARROW-GAP III-V SEMICONDUCTORS

    Get PDF
    We report theoretical electronic structure of Fibonacci superlattices of narrow-gap III-V semiconductors. Electron dynamics is accurately described within the envelope-function approximation in a two-band model. Quasiperiodicity is introduced by considering two different III-V semiconductor layers and arranging them according to the Fibonacci series along the growth direction. The resulting energy spectrum is then found by solving exactly the corresponding effective-mass (Dirac-like) wave equation using tranfer-matrix techniques. We find that a self-similar electronic spectrum can be seen in the band structure. Electronic transport properties of samples are also studied and related to the degree of spatial localization of electronic envelope-functions via Landauer resistance and Lyapunov coefficient. As a working example, we consider type II InAs/GaSb superlattices and discuss in detail our results in this system.Comment: REVTeX 3.0, 16 pages, 8 figures available upon request. To appear in Semiconductor Science and Technolog

    Custom Integrated Circuits

    Get PDF
    Contains reprots on two research projects.U.S. Air Force (Contract F49620-81-C-0054)U.S. Air Force (Contract F49620-80-C-0073
    • …
    corecore