4,456 research outputs found

    Controlling a remotely located Robot using Hand Gestures in real time: A DSP implementation

    Full text link
    Telepresence is a necessity for present time as we can't reach everywhere and also it is useful in saving human life at dangerous places. A robot, which could be controlled from a distant location, can solve these problems. This could be via communication waves or networking methods. Also controlling should be in real time and smooth so that it can actuate on every minor signal in an effective way. This paper discusses a method to control a robot over the network from a distant location. The robot was controlled by hand gestures which were captured by the live camera. A DSP board TMS320DM642EVM was used to implement image pre-processing and fastening the whole system. PCA was used for gesture classification and robot actuation was done according to predefined procedures. Classification information was sent over the network in the experiment. This method is robust and could be used to control any kind of robot over distance

    Transmission Electron Microscope Studies of Thin Films of CdSe Vacuum Evaporated from Knudsen-Type Source

    Get PDF
    A Knudsen-type evaporation source was used for the vacuum deposition of thin films of CdSe to study their growth and microstructure on to air-cleaved KCI and mica substrates under different rates of evaporation and substrate temperatures. The conditions for the growth of epitaxial films of this material onto mica have also been established and their photoconducting properties evaluated. CdSe films prepared by this source retain their stoichiometry and compare well with those prepared by other sources of vacuum evaporation

    Does co-transcriptional regulation of alternative splicing mediate plant stress responses?

    Get PDF
    Plants display exquisite control over gene expression to elicit appropriate responses under normal and stress conditions. Alternative splicing (AS) of pre-mRNAs, a process that generates two or more transcripts from multi-exon genes, adds another layer of regulation to fine-tune condition-specific gene expression in animals and plants. However, exactly how plants control splice isoform ratios and the timing of this regulation in response to environmental signals remains elusive. In mammals, recent evidence indicate that epigenetic and epitranscriptome changes, such as DNA methylation, chromatin modifications and RNA methylation, regulate RNA polymerase II processivity, co-transcriptional splicing, and stability and translation efficiency of splice isoforms. In plants, the role of epigenetic modifications in regulating transcription rate and mRNA abundance under stress is beginning to emerge. However, the mechanisms by which epigenetic and epitranscriptomic modifications regulate AS and translation efficiency require further research. Dynamic changes in the chromatin landscape in response to stress may provide a scaffold around which gene expression, AS and translation are orchestrated. Finally, we discuss CRISPR/Cas-based strategies for engineering chromatin architecture to manipulate AS patterns (or splice isoforms levels) to obtain insight into the epigenetic regulation of AS

    Comparative effectiveness of S-adenosylmethionine and etoricoxib in newly diagnosed patients of knee osteoarthritis

    Get PDF
    Background: Knee osteoarthritis is an important cause for morbidity in elderly people. Therapy is largely symptomatic with nonsteroidal anti-inflammatory drugs which pose risk in the elderly. Methionine is natural body constituent with novel property of blunting S-adenosylmethionine (SAMe) inflammatory process and cartilage degradation. The aim of this study was to compare effectiveness of SAMe, with standard etoricoxib therapy in newly diagnosed knee osteoarthritis cases.Methods: 127 newly diagnosed knee osteoarthritis patients were randomized into two groups. 55 participants received treatment  of etoricoxib 600 mg extended release once daily for 90 days (group 1) and 72 received  etoricoxib 600 mg extended release once daily and SAMe 400 mg twice daily  for initial 15 days followed by SAMe once daily 400 mg as maintenance dose for next 75 days  (group 2). The outcomes were measured by knee injury and osteoarthritis outcome score (KOOS). Pre and post treatment KOOS scores of all cases were separately pooled to define the median for whole as well as components of KOOS parameters. Relative frequencies of cases with values around respective medians were compared by MOODS median test. Patient characteristics, disease characteristics were also examined for bearing on outcomes besides the treatment.Results: SAMe treatment was associated with significantly greater improvement in symptoms, activities of daily life, spontaneous recreational activities and the quality of life compared to etoricoxib therapy. The therapy was well-tolerated.Conclusions: The study confirms SAMe as superior therapeutic option in osteoarthritis. SAMe indeed has been reported to have specific anti-arthritic effects and promotive to general well-being

    Polariton Nanophotonics using Phase Change Materials

    Full text link
    Polaritons formed by the coupling of light and material excitations such as plasmons, phonons, or excitons enable light-matter interactions at the nanoscale beyond what is currently possible with conventional optics. Recently, significant interest has been attracted by polaritons in van der Waals materials, which could lead to applications in sensing, integrated photonic circuits and detectors. However, novel techniques are required to control the propagation of polaritons at the nanoscale and to implement the first practical devices. Here we report the experimental realization of polariton refractive and meta-optics in the mid-infrared by exploiting the properties of low-loss phonon polaritons in isotopically pure hexagonal boron nitride (hBN), which allow it to interact with the surrounding dielectric environment comprising the low-loss phase change material, Ge3_3Sb2_2Te6_6 (GST). We demonstrate waveguides which confine polaritons in a 1D geometry, and refractive optical elements such as lenses and prisms for phonon polaritons in hBN, which we characterize using scanning near field optical microscopy. Furthermore, we demonstrate metalenses, which allow for polariton wavefront engineering and sub-wavelength focusing. Our method, due to its sub-diffraction and planar nature, will enable the realization of programmable miniaturized integrated optoelectronic devices, and will lay the foundation for on-demand biosensors.Comment: 15 pages, 4 figures, typos corrected in v
    • …
    corecore