29,923 research outputs found

    The core helium flash revisited: II. Two and three-dimensional hydrodynamic simulations

    Full text link
    We study turbulent convection during the core helium flash close to its peak by comparing the results of two and three-dimensional hydrodynamic simulations. We use a multidimensional Eulerian hydrodynamics code based on state-of-the-art numerical techniques to simulate the evolution of the helium core of a 1.25M1.25 M_{\odot} Pop I star. Our three-dimensional hydrodynamic simulations of the evolution of a star during the peak of the core helium flash do not show any explosive behavior. The convective flow patterns developing in the three-dimensional models are structurally different from those of the corresponding two-dimensional models, and the typical convective velocities are smaller than those found in their two-dimensional counterparts. Three-dimensional models also tend to agree better with the predictions of mixing length theory. Our hydrodynamic simulations show the presence of turbulent entrainment that results in a growth of the convection zone on a dynamic time scale. Contrary to mixing length theory, the outer part of the convection zone is characterized by a sub-adiabatic temperature gradient.Comment: 19 pages, 18 figure

    Polaron Coherence as Origin of the Pseudogap Phase in High Temperature Superconducting Cuprates

    Get PDF
    Within a two component approach to high Tc copper oxides including polaronic couplings, we identify the pseudogap phase as the onset of polaron ordering. This ordering persists in the superconducting phase. A huge isotope effect on the pseudogap onset temperature is predicted and in agreement with experimental data. The anomalous temperature dependence of the mean square copper oxygen ion displacement observed above, at and below Tc stems from an s-wave superconducting component of the order parameter, whereas a pure d-wave order parameter alone can be excluded.Comment: 7 pages, 2 figure

    Natural linewidth analysis of d-band photoemission from Ag(110)

    Full text link
    We report a high-resolution angle-resolved study of photoemission linewidths observed for Ag(110). A careful data analysis yields kresolvedupperlimitsfortheinverseinelasticlifetimesof-resolved upper limits for the inverse inelastic lifetimes of dholesattheXpointofthebulkbandstructure.Attheupper-holes at the X-point of the bulk band structure. At the upper dbandedgetheholelifetimeis-band edge the hole-lifetime is \tau_h \geq 22 fs,i.e.morethanoneorderofmagnitudelargerthanpredictedforafreeelectrongas.Followingcalculationsforfs, i.e. more than one order of magnitude larger than predicted for a free-electron gas. Following calculations for d$-hole dynamics in Cu (I.\ Campillo et al., Phys. Rev. Lett., in press) we interpret the lifetime enhancement by a small scattering cross-section of dd- and spsp-states below the Fermi level. With increasing distance to EFE_F the dd-hole lifetimes get shorter because of the rapidly increasing density of d-states and contributions of intra-dd-band scattering processes, but remain clearly above free-electron-model predictions.Comment: 14 pages, 7 figure

    Phase relaxation of Faraday surface waves

    Full text link
    Surface waves on a liquid air interface excited by a vertical vibration of a fluid layer (Faraday waves) are employed to investigate the phase relaxation of ideally ordered patterns. By means of a combined frequency-amplitude modulation of the excitation signal a periodic expansion and dilatation of a square wave pattern is generated, the dynamics of which is well described by a Debye relaxator. By comparison with the results of a linear theory it is shown that this practice allows a precise measurement of the phase diffusion constant.Comment: 5 figure

    Stirring trapped atoms into fractional quantum Hall puddles

    Full text link
    We theoretically explore the generation of few-body analogs of fractional quantum Hall states. We consider an array of identical few-atom clusters (n=2,3,4), each cluster trapped at the node of an optical lattice. By temporally varying the amplitude and phase of the trapping lasers, one can introduce a rotating deformation at each site. We analyze protocols for coherently transferring ground state clusters into highly correlated states, producing theoretical fidelities in excess of 99%.Comment: 4 pages, 3 figures (13 subfigures) -- v2: published versio

    Static and dynamic structure factors in the Haldane phase of the bilinear-biquadratic spin-1

    Get PDF
    The excitation spectra of the T=0 dynamic structure factors for the spin, dimer, and trimer fluctuation operators as well as for the newly defined center fluctuation operator in the one-dimensional S=1 Heisenberg model wi th isotropic bilinear (Jcosθ)(J\cos\theta) and biquadratic (Jsinθ)(J\sin\theta) exchange are investigated via the recursion method for systems with up to N=18 site s over the predicted range, π/4<θπ/4-\pi/4<\theta\lesssim\pi/4, of the topologically ordered Haldane phase. The four static and dynamic structure factors probe t he ordering tendencies in the various coupling regimes and the elementary and composite excitations which dominate the T=0 dynamics. At θ=arctan1/3\theta = \arctan{1/3} (VBS point), the dynamically relevant spectra in the invariant subspaces with total spin ST=0,1,2S_T = 0,1,2 are dominated by a branch of magnon states (ST=1)(S_T = 1), by continua of two-magnon scattering states (ST=0,1,2)(S_T = 0,1,2), and by discrete branches of two-magnon bound states with positive interaction energy (ST=0,2)(S_T = 0,2). The dimer and trimer spectra at q=πq=\pi ar e found to consist of single modes with NN-independent excitation energies ωλD/e0=5\omega_\lambda^D/|e_0|=5 and ωλT/e0=6\omega_\lambda^T/|e_0|=6, where e0=E0/Ne_0=E_0/N is the ground-state energy per site. The basic structure of the dynamically relevant excitation spectrum remains the same over a substantial parameter range within the Haldane phase. At the transition to the dimerized phase (θ=π/4\theta=-\pi/4), the two-magnon excitations turn into two-spinon excitations.Comment: 12 pages, 4 Postscript figure

    Nonlinear QCD Evolution: Saturation without Unitarization

    Get PDF
    We consider the perturbative description of saturation based on the nonlinear QCD evolution equation of Balitsky and Kovchegov (BK). Although the nonlinear corrections lead to saturation of the scattering amplitude locally in impact parameter space, we show that they do not unitarize the total cross section. The total cross section for the scattering of a strongly interacting probe on a hadronic target is found to grow exponentially with rapidity. The origin of this violation of unitarity is the presence of long range Coulomb fields away from the saturation region. The growth of these fields with rapidity is not tempered by the nonlinearity of the BK equation.Comment: 4 pages, RevTe
    corecore