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We consider the perturbative description of saturation
based on the nonlinear QCD evolution equation of Balit-
sky and Kovchegov (BK). Although the nonlinear corrections
lead to saturation of the scattering amplitude locally in im-
pact parameter space, we show that they do not unitarize
the total cross section. The total cross section for the scat-
tering of a strongly interacting probe on a hadronic target
is found to grow exponentially with rapidity t = ln(s/s0),
σ ∝ exp{αsNc

2π
εt} where ε is a number of order unity. The

origin of this violation of unitarity is the presence of long
range Coulomb fields away from the saturation region. The
growth of these fields with rapidity is not tempered by the
nonlinearity of the BK equation.

Understanding the growth of total scattering cross sec-
tions with energy

√
s is a longstanding problem. The uni-

tarity, or Froissart bound states that the total inelastic
cross section for the scattering of a hadronic projectile
on a hadronic target can not grow faster than

σ < πd2 ln2(s/s0) , (1)

where d is some typical hadronic scale and t = ln(s/s0)
the rapidity. While QCD, the theory of hadronic interac-
tions, is a unitary theory and therefore satisfies this uni-
tarity bound, there is no guarantee that perturbative cal-
culations preserve this property. In fact, the linear per-
turbative evolution equation due to Balitsky, Fadin, Ku-
raeev and Lipatov (BFKL) implies an exponential growth
of σ with t, thus violating unitarity.

Following the pioneering works of [1,2], there has been
recent progress in high energy hadronic scattering in a
derivation of a nonlinear evolution equation [3–5] which
tames the BFKL-type growth. These equations resum
the nonlinear corrections to the QCD evolution with ra-
pidity (energy) to all orders in partonic density and to
first order in the QCD coupling. While previous stud-
ies of these equations assumed translational invariance
in the impact parameter plane, here we explore for the
first time their impact parameter dependence. For the
equations first derived by Balitsky [3], we show that the
total cross section does not unitarize but grows exponen-
tially with t.

The first in the hierarchy of nonlinear BK evolution
equations which govern the evolution of correlation func-
tions of the gluon fields in the target with t, reads [3]

d

dt
Tr〈1 − U †(x)U(y)〉 =

αs

2π2

∫
d2z

(x− y)2

(x− z)2(y − z)2

〈NcTr[U †(x)U(y)]− Tr[U †(x)U(z)]Tr[U †(z)U(y)]〉 , (2)

where U(x) is the eikonal scattering amplitude of a fun-
damental probe on the target characterized by some dis-
tribution of gluon fields Aµ. In the gauge used in [3]

U(x) = P exp
[
i

∫
dx−T aA+

a (x)
]
. (3)

The averaging in (2) is taken over the ensemble charac-
terizing the target. In the large Nc limit, (2) simplifies to
a closed equation for the scattering probability N(x, y)
of a colour singlet dipole with charges at points x, y

N(x, y) =
1

Nc
Tr〈1− U †(x)U(y)〉 . (4)

This equation was independently derived by
Kovchegov [4] in the colour dipole approach of [7]

d

dt
N(x, y) =

αsNc

2π2

∫
d2z

(x − y)2

(x− z)2(y − z)2

[N(x, z) + N(y, z)−N(x, y)−N(x, z)N(z, y)] . (5)

Weigert [5] suceeded to reformulate Balitsky’s hierarchy
in terms of a nonlinear stochastic process,

dU(x)
dt

= gU(x)iT a

∫
d2z√
4π3

(x− z)i

(x − z)2
[
1− Ũ †(x)Ũ (z)

]ab

ξb
i (z)

− iαs

2π2

∫
d2z

1
(x− z)2

Tr[T aŨ †(x)Ũ (z)] . (6)

Here U(x) and Ũ(x) are the unitary matrices (3) in the
fundamental and adjoint representations, respectively.
The noise is characterised by Gaussian local correlations

〈ξa
i (t′, z′)ξb

j(t
′′, z′′)〉 = δabδijδ(t′ − t′′)δ(z′ − z′′) . (7)

This simple Langevin equation gives rise to an infinite
number of equations for correlators of U which coincide
with those derived in [3].

Nonlinear evolution equations were also derived in the
Wilson renormalization group approach [6]. While re-
sults from this approach coincide with (2,5) in a certain
limit, the question whether they are generally equivalent
or incorporate different physics is still open. Here, we
focus entirely on the BK equations (2,5,6).

From the first numerical [8–10] and analytical [11,12]
studies of the BK eqs. (2,5) the following consistent pic-
ture emerges: Suppose one starts the evolution from the
initial condition of small target fields (or N(x, y) � 1 for
all x, y). Then initially the evolution follows the BFKL
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equation, since the nonlinear term in (5) is negligible. As
the scattering probability approaches unity, the nonlin-
ear term kicks in and eventually the growth stops as the
RHS of (5) vanishes for N(x, y) = 1. The larger dipoles
[(x− y)2 � 1/Q2

s(t)] saturate earlier, the smaller dipoles
follow at later ”time” t. These features are contained in
the simple parametrization [13]

N(x, y) = 1− exp
[
− (x− y)2Q2

s(t)
]
. (8)

The saturation momentum Qs(t) is a growing function of
rapidity. Its exact dependence on rapidity is not known,
but both, the numerical results [8] and simple theoreti-
cal estimates [14,12] are consistent with the exponential
growth of the form

Qs(t) = Λ exp
[
αsct

]
(9)

with c of order unity. This physical picture has been
anticipated several years ago in [14].

While the BFKL equation leads to an unphysical expo-
nential growth of the scattering probability N(x, y) with
t, the nonlinearities of eqs. (2,5) tame this growth such
that N(x, y) < 1, as required for a probability. This is
commonly refered to as “unitarization”. However, the
“saturation” of the scattering probability at fixed im-
pact parameter does not insure that the total scattering
cross section is unitary. We hence refer to the above phe-
nomenon more accurately as ”saturation”.

To calculate the total inelastic cross section one has
to integrate the scattering probability over the impact
parameter. Thus in the saturation regime

σ = πR2(t) , (10)

where R(t) is the size of the region in the transverse
plain for which the scattering probability for hadronic
size ”dipoles” is unity. To satisfy the Froissart bound
the radius R(t) should grow at most linearly with t. We
now present two simple calculations which establish that
within the BK evolution the growth of the radius with
rapidity is exponential.

First consider the Langevin equation (6). Assume that
initially, at rapidity t0 the target is black within some ra-
dius R0. This means that for |z| < R0 the matrix U(z)
fluctuates very strongly so that it covers the whole group
space. We concentrate on a point x which is initially out-
side of this black region. The matrix U(x) then is close
to unity. Thus there is no correlation between U(x) and
U(z), and the second term on the right hand side of (6)
can be set to zero. This is the random phase approxima-
tion introduced in [5] and used later in [12]. As the target
field ensemble evolves in rapidity, the radius of the black
region grows. As long as the point x stays outside the
black region we can approximate the Langevin equation
by (we drop colour indices which are inessential to our
argument)

d

dt
U(x) = −

√
αsNc

π2

∫
|z|<R

d2z
(x− z)i

(x− z)2
ξi(z) . (11)

This equation neglects contributions to the derivative of
U that come from gluons originating from the sources
outside the black region. Those contributions would en-
hance the growth of U , and so by omitting them we un-
derestimate the rate of growth of the radius of the black
region. The formal solution of eq. (11) is

1− U(x, t) =

√
αsNc

π2

∫ t

t0

dτ

∫
|z|<R(τ)

d2z
(x− z)i

(x− z)2
ξi(z) . (12)

Squaring it and averaging over the noise term gives

〈(1 − U(x, t))2〉 =
αsNc

π2

∫ t

t0

dτ

∫
|z|<R(τ)

d2z

(x− z)2
. (13)

As long as x is outside the black region we can approxi-
mate the integral on the right hand side by∫

|z|<R(τ)

d2z
1

(x− z)2
= π

R2(τ)
x2

, (14)

and eq.(13) becomes

〈(1− U(x, t))2〉 =
αsNc

π

1
x2

∫ t

t0

dτR2(τ) . (15)

Now as the black region grows, eventually it reaches the
point x. At this rapidity the matrix U(x) will start fluc-
tuating with the amplitude of order one. Thus when
R(t) = |x|, the left hand side of eq. (15) becomes a num-
ber of order one, which we call 1/ε. We thus have an
approximate equation for R(t)

1
ε
R2(t) =

αsNc

π

∫ t

t0

dτR2(τ) . (16)

At large rapidities therefore the radius of the black region
is exponentially large

R(t) = R(t0) exp
[αsNc

2π
ε(t− t0)

]
. (17)

This is our main result.
We note that while the approximations leading to eq.

(16) cease to be valid when the point x is on the boundary
of the black region, this does not affect our main conclu-
sion. First, eq. (14) is an underestimate of the integral,
thus underestimating the growth of R. Second, when x
is on the boundary of the black region and z in the black
region, although the factors (1−U(x)U †(z)) and U(x) in
eq.(6) are not strictly unity, they are still of order one for
allmost all points z. Thus, although we can not deter-
mine the exact numerical value of ε, the functional form
of the solution as well as its parametric dependence is
given correctly by eq.(17).
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Note that eq. (6) refers to the evolution of matrices
U(x). This can be thought of as evolution of the scatter-
ing amplitude of a coloured probe. The preceding deriva-
tion thus refers to the growth with rapidity of the cross
section for scattering of a coloured probe. In a confin-
ing theory this is not a physical quantity. However the
physics of BK equation does not incorporate effects of
confinement, and therefore the cross section for a colour-
less dipole within the BK framework must grow in the
same way. To establish this point, and to make more
explicit the relation between ε and the BFKL dynamics,
we now present an alternative derivation of eq. (17).

To this end we consider the BK evolution as the evo-
lution of the projectile [4]. Suppose at the initial energy
the projectile is a colour dipole of size x0. It scatters on
a hadronic target of some size Rtarget. As is explicit in
[4], as the energy is increased the projectile wave func-
tion evolves according to the BFKL equation. Thus at
rapidity t the density of dipoles of size x at transverse
distance r from the original dipole is given by the BFKL
expression (see for example [15]):

n(x0, x, r, t) =
32
x2

ln 16r2

x0x

(πa2t)3/2
exp

[
ωt− ln

16r2

x0x
− ln2 16r2

x0x

a2t

]

(18)

with ω = 4 ln 2Ncαs/π and a2 = 14ζ(3)Ncαs/π. When
the density of dipoles at a given impact parameter is
greater than one, multiple scatterings become important.
Thus the scattering probability is not proportional to n,
but is an infinite series containing all multiple scattering
terms [4].

For our argument, it is only important that once the
density of dipoles at some impact parameter r becomes
larger than some fixed critical number, the scattering am-
plitude at this impact parameter saturates. The exact
value of this number depends on the target, but impor-
tantly it does not depend on rapidity. Thus the total
cross section is given by the square of the largest impact
parameter at which the dipole density in the projectile
wave function is of order unity. In order to estimate this
directly from eq. (18), we must choose the dipole size x
in (18) to be the smallest size which is saturated on the
target at initial rapidity. Within the ansatz of eq. (8)
this would be x = Q−1

s (t0). We then find

R2(t) =
1
16

x0

Qs(t0)
exp[

αsNc

π
εt] , (19)

ε = 7 ζ(3)
[
− 1 +

√
1 + 8 ln 2/7ζ(3)

]
. (20)

Thus, also for a coulour singlet projectile, we arrive again
at the exponential growth of the cross section.

The exact value of ε given in eq. (20) should not be
taken too seriously. The explicit form of the dipole den-
sity eq. (18) was derived by a saddle point integration,

and as such is valid only for ln 16r2

x0x < αst. This condition
is not satisfied by eq. (19). However, even beyond the
saddle point approximation the density has the form

n(x0, x, r, t) =
1
x2

ln
16r2

x0x
exp

[
αstF (

ln 16r2

x0x

αst
)
]
. (21)

The relevant condition is F = 0. Thus, while our calcula-
tion does not specify the numerical value of ε, the correct
solution parametrically is the same as (19).

In the target rest frame, this violation of unitarity by
the BK evolution can be understood as follows: Start
with a single dipole scattering on the hadronic target
of transverse size Rtarget. With increasing energy the
projectile dipole emits additional dipoles strictly accord-
ing to the BFKL evolution. The density as well as the
transverse size of the projectile state thus grows. The
increase in density leads to increasing importance of mul-
tiple scatterings which are properly accounted for in the
BK derivation. This ensures that the scattering proba-
bility saturates locally. In the saturation regime, as long
as the size of the projectile state R(t) is smaller than the
target size Rtarget, the cross section grows essentially due
to surface effects,

σ = πR2
target + 2πRtargetx0 exp

[αsNc

2π
εt

]
. (22)

Thus as long as αsεt < ln Rtarget
x0

, the cross section is
practically geometrical. However once the energy is high
enough so that the projectile size is larger than that of
the target, the total cross section is determined by the
former and grows exponentially with the logarithm of
energy according to eq. (19).

This also illustrates that the applicability of the BK
evolution crucially depends on the nature of the target.
If the target is thick enough, so that the multiple scatter-
ings become important before the growth of the projectile
radius does, and if the target is wide enough, so that sat-
uration occurs before the projectile radius swells beyond
that of the target, then there is an intermediate regime in
which the inelastic cross section remains practically con-
stant and equal to πR2

target. Then BK applies. However,
if the target is a nucleon, neither one of these conditions
is satisfied. Thus the tainted infrared behaviour of the
BFKL evolution of the projectile will show up right away
and will invalidate the application of the BK equation.

In order to discuss the violation of unitary from the
point of view of the evolution of target fields, we now
go back to the stochastic process (6). The RHS of (6)
describes the total Coulomb (Weizsäcker-Williams) field
at point x due to the colour charge sources at points
z. Since the noise is stochastic, the colour sources are
completely uncorrelated both in the transverse plain and
in rapidity. For this random source, the square of the
total colour charge is proportional to the area, and this
is precisely the factor R2 in eq. (15). The incoming
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dipole thus scatters on the Coulomb field created by the
large incoherent colour charge. Because the Coulomb
field is long range, the whole bulk of the region populated
by the sources contributes to the evolution and leads to
rapid growth of R. If the field created by the sources was
screened by some mass, the evolution would be unitary.
To illustrate this point, we substitute the Coulomb field
(x − z)i/(x − z)2 in (eq.6) by an exponentially decaying
field m exp{−m|x− z|}. It is straightforward to perform
now the same analysis as before. Eq. (14) is replaced by∫

|z|<R(τ)

d2z m2 exp{−m|x− z|} = exp{−m|x−R|} . (23)

This leads to the substitution R2 → exp{mR} in all sub-
sequent equations with the end result that

R(t) = αs
ε

m
t , (24)

which in fact saturates the Froissart bound. Thus the
reason for the violation of unitarity is that the evolution
is driven by the emission of the long range Coulomb field
from a large number of incoherent colour sources in the
target.

Cutting off the Coulomb field is not the only possibility
to cure this problem. Another option is that the sources
of the colour charge in the high density regime cease to
be incoherent. If they have correlations ensuring that
the total colour charge in a region of fixed size L is zero,
then the incoming dipole would feel the Coulomb field
only within the fixed distance L from the black region.
Thus the new charges produced by the evolution would
only ”split off” the edges of the black region rather than
from its bulk. This scenario is equivalent to exponential
decay of the field, and will lead to a unitary evolution. In
a confining theory like QCD, it is likely to be material-
ized. We note that the desirability of such colour charge
correlations was stressed in a somewhat different context
in [16].

Although such charge correlations do not arise in the
BK evolution, it is not a priori clear that they are not
present in a more complete semiperturbative framework
which still does not take into account the physics of con-
finement at low energies. In fact, the BK framework is
incomplete inasmuch as it takes the evolution of the pro-
jectile wave function to be pure BFKL. One expects that
once the density of gluons in this wave function becomes
large, interactions should lead to saturation effects on the
wave function level, i.e., the density of the dipoles should
grow slower than eq. (18). Such corrections should still
be semiperturbative, in the sense that they are present
at small αs. However, for scattering on ”small” targets,
they will become important at the same energy as the
multiple scattering terms resummed in eq. (2,5). These
wave function saturation effects may lead to charge cor-
relations of the type necessary to unitarize the total cross
section.

We finally note that the unitarity bound for Deeply
Inelastic Scattering is different. In this case, the projec-
tile is a virtual photon without fixed hadronic size. For
transverse polarization, its perturbatively known wave
function is Φ2(r) ∝ αem

1
r2 for r2 � Q−2. In such a pro-

jectile not all dipoles saturate at the same energy. The
main contribution to the scattering probability comes
from dipoles of size r > Q−1

s (t) which are saturated. At
high energy (i.e. for Q−1

s � Q−1),

N(γ∗) =
∫

Q−2
s <r2<Q−2

d2rΦ2(r) ∝ αem ln Qs/Q . (25)

With the exponential dependence (9) of Qs on rapidity
this translates into N(γ∗) ∝ αemαs ln s/s0, and therefore

σDIS ∝ αemαsπR2(t)t . (26)

The DIS cross section has an extra power of t relative to
the cross section of a purely hadronic process. This extra
power of t is consistent with the numerical results of [10].
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