89,735 research outputs found

    Differential analysis for the turbulent boundary layer on a compressor blade element (including boundary-layer separation)

    Get PDF
    A two-dimensional differential analysis is developed to approximate the turbulent boundary layer on a compressor blade element with strong adverse pressure gradients, including the separated region with reverse flow. The predicted turbulent boundary layer thicknesses and velocity profiles are in good agreement with experimental data for a cascade blade, even in the separated region

    Non-Gaussian fluctuations near the QCD critical point

    Full text link
    We study the effect of the QCD critical point on non-Gaussian moments (cumulants) of fluctuations of experimental observables in heavy-ion collisions. We find that these moments are very sensitive to the proximity of the critical point, as measured by the magnitude of the correlation length xi. For example, the cubic central moment of multiplicity ~ xi^4.5 and the quartic cumulant ~ xi^7. We estimate the magnitude of critical point contributions to non-Gaussian fluctuations of pion and proton multiplicities.Comment: 4 pages, 3 figure

    Coherent center domains from local Polyakov loops

    Get PDF
    We analyze properties of local Polyakov loops using quenched as well as dynamical SU(3) gauge configurations for a wide range of temperatures. It is demonstrated that for both, the confined and the deconfined regime, the local Polyakov loop prefers phase values near the center elements 1, exp(i 2 pi/3), exp(-i 2 pi/3). We divide the lattice sites into three sectors according to these phases and show that the sectors give rise to the formation of clusters. For a suitable definition of these clusters we find that in the quenched case deconfinement manifests itself as the onset of percolation of the clusters. A possible continuum limit of the center clusters is discussed

    Chandra observations of the galaxy cluster Abell 1835

    Get PDF
    We present the analysis of 30 ksec of Chandra observations of the galaxy cluster Abell 1835. Overall, the X-ray image shows a relaxed morphology, although we detect substructure in in the inner 30 kpc radius. Spectral analysis shows a steep drop in the X-ray gas temperature from ~12 keV in the outer regions of the cluster to ~4 keV in the core. The Chandra data provide tight constraints on the gravitational potential of the cluster which can be parameterized by a Navarro, Frenk & White (1997) model. The X-ray data allow us to measure the X-ray gas mass fraction as a function of radius, leading to a determination of the cosmic matter density of \Omega_m=0.40+-0.09 h_50^-0.5. The projected mass within a radius of ~150 kpc implied by the presence of gravitationally lensed arcs in the cluster is in good agreement with the mass models preferred by the Chandra data. We find a radiative cooling time of the X-ray gas in the centre of Abell 1835 of about 3x10^8 yr. Cooling flow model fits to the Chandra spectrum and a deprojection analysis of the Chandra image both indicate the presence of a young cooling flow (~6x10^8 yr) with an integrated mass deposition rate of 230^+80_-50 M_o yr^-1 within a radius of 30 kpc. We discuss the implications of our results in the light of recent RGS observations of Abell 1835 with XMM-Newton.Comment: 15 pages, 15 figures, accepted by MNRA
    • …
    corecore