8,284 research outputs found
Airborne observations of methane in Comet Kohoutek
The experiment is described for airborne observations of Comet Kohoutek using an infrared tilting-filter photometer. Preliminary analysis of the data established an upper limit to the Comet's fluorescence radiation in methane lines at 3.3 microns
Vortex spectrum in superfluid turbulence: interpretation of a recent experiment
We discuss a recent experiment in which the spectrum of the vortex line
density fluctuations has been measured in superfluid turbulence. The observed
frequency dependence of the spectrum, , disagrees with classical
vorticity spectra if, following the literature, the vortex line density is
interpreted as a measure of the vorticity or enstrophy. We argue that the
disagrement is solved if the vortex line density field is decomposed into a
polarised field (which carries most of the energy) and an isotropic field
(which is responsible for the spectrum).Comment: Submitted for publication
http://crtbt.grenoble.cnrs.fr/helio/GROUP/infa.html
http://www.mas.ncl.ac.uk/~ncfb
Full counting statistics of nano-electromechanical systems
We develop a theory for the full counting statistics (FCS) for a class of
nanoelectromechanical systems (NEMS), describable by a Markovian generalized
master equation. The theory is applied to two specific examples of current
interest: vibrating C60 molecules and quantum shuttles. We report a numerical
evaluation of the first three cumulants for the C60-setup; for the quantum
shuttle we use the third cumulant to substantiate that the giant enhancement in
noise observed at the shuttling transition is due to a slow switching between
two competing conduction channels. Especially the last example illustrates the
power of the FCS.Comment: 7 pages, 3 figures; minor changes - final version as published in
Europhys. Let
Competition between magnetic field dependent band structure and coherent backscattering in multiwall carbon nanotubes
Magnetotransport measurements in large diameter multiwall carbon nanotubes
(20-40 nm) demonstrate the competition of a magnetic-field dependent
bandstructure and Altshuler-Aronov-Spivak oscillations. By means of an
efficient capacitive coupling to a backgate electrode, the magnetoconductance
oscillations are explored as a function of Fermi level shift. Changing the
magnetic field orientation with respect to the tube axis and by ensemble
averaging, allows to identify the contributions of different Aharonov-Bohm
phases. The results are in qualitative agreement with numerical calculations of
the band structure and the conductance.Comment: 4 figures, 5 page
Adaptive optics imaging of P Cygni in Halpha
We obtained Halpha diffraction limited data of the LBV star P Cyg using the
ONERA Adaptive Optics (AO) facility BOA at the OHP 1.52m telescope on October
1997. Taking P Cyg and the reference star 59 Cyg AO long exposures we find that
P Cyg clearly exhibits a large and diffuse intensity distribution compared to
the 59 Cyg's point-like source. A deconvolution of P Cyg using 59 Cyg as the
Point Spread Function was performed by means of the Richardson-Lucy algorithm.
P Cyg clearly appears as an unresolved star surrounded by a clumped envelope.
The reconstructed image of P Cyg is compared to similar spatial resolution maps
obtained from radio aperture synthesis imaging. We put independent constraints
on the physics of P Cyg which agree well with radio results. We discuss future
possibilities to constrain the wind structure of P Cyg by using
multi-resolution imaging, coronagraphy and long baseline interferometry to
trace back its evolutionary status.Comment: 10 pages, 19 Encapsulated Postscript figure
Effect of interactions on the noise of chiral Luttinger liquid systems
We analyze the current noise, generated at a quantum point contact in
fractional quantum Hall edge state devices, using the chiral Luttinger liquid
model with an impurity and the associated exact field theoretic solution. We
demonstrate that an experimentally relevant regime of parameters exists where
the noise coincides with the partition noise of independent Laughlin
quasiparticles. However, outside of this regime, this independent particle
picture breaks down and the inclusion of interaction effects is essential to
understand the shot noise.Comment: 4 pages, 3 figures; v2: modified FIG.1, new FIG.
Robust quantum coherence above the Fermi sea
In this paper we present an experiment where we measured the quantum
coherence of a quasiparticle injected at a well-defined energy above the Fermi
sea into the edge states of the integer quantum Hall regime. Electrons are
introduced in an electronic Mach-Zehnder interferometer after passing through a
quantum dot that plays the role of an energy filter. Measurements show that
above a threshold injection energy, the visibility of the quantum interferences
is almost independent of the energy. This is true even for high energies, up to
130~eV, well above the thermal energy of the measured sample. This result
is in strong contradiction with our theoretical predictions, which instead
predict a continuous decrease of the interference visibility with increasing
energy. This experiment raises serious questions concerning the understanding
of excitations in the integer quantum Hall regime
Finite bias visibility of the electronic Mach-Zehnder interferometer
We present an original statistical method to measure the visibility of
interferences in an electronic Mach-Zehnder interferometer in the presence of
low frequency fluctuations. The visibility presents a single side lobe
structure shown to result from a gaussian phase averaging whose variance is
quadratic with the bias. To reinforce our approach and validate our statistical
method, the same experiment is also realized with a stable sample. It exhibits
the same visibility behavior as the fluctuating one, indicating the intrinsic
character of finite bias phase averaging. In both samples, the dilution of the
impinging current reduces the variance of the gaussian distribution.Comment: 4 pages, 5 figure
- …