390 research outputs found

    Unzipping Dynamics of Long DNAs

    Full text link
    The two strands of the DNA double helix can be `unzipped' by application of 15 pN force. We analyze the dynamics of unzipping and rezipping, for the case where the molecule ends are separated and re-approached at constant velocity. For unzipping of 50 kilobase DNAs at less than about 1000 bases per second, thermal equilibrium-based theory applies. However, for higher unzipping velocities, rotational viscous drag creates a buildup of elastic torque to levels above kBT in the dsDNA region, causing the unzipping force to be well above or well below the equilibrium unzipping force during respectively unzipping and rezipping, in accord with recent experimental results of Thomen et al. [Phys. Rev. Lett. 88, 248102 (2002)]. Our analysis includes the effect of sequence on unzipping and rezipping, and the transient delay in buildup of the unzipping force due to the approach to the steady state.Comment: 15 pages Revtex file including 9 figure

    Carrier relaxation in GaAs v-groove quantum wires and the effects of localization

    Get PDF
    Carrier relaxation processes have been investigated in GaAs/AlGaAs v-groove quantum wires (QWRs) with a large subband separation (46 meV). Signatures of inhibited carrier relaxation mechanisms are seen in temperature-dependent photoluminescence (PL) and photoluminescence-excitation (PLE) measurements; we observe strong emission from the first excited state of the QWR below ~50 K. This is attributed to reduced inter-subband relaxation via phonon scattering between localized states. Theoretical calculations and experimental results indicate that the pinch-off regions, which provide additional two-dimensional confinement for the QWR structure, have a blocking effect on relaxation mechanisms for certain structures within the v-groove. Time-resolved PL measurements show that efficient carrier relaxation from excited QWR states into the ground state, occurs only at temperatures > 30 K. Values for the low temperature radiative lifetimes of the ground- and first excited-state excitons have been obtained (340 ps and 160 ps respectively), and their corresponding localization lengths along the wire estimated.Comment: 9 pages, 8 figures, submitted to Phys. Rev. B Attempted to correct corrupt figure

    Multiband theory of multi-exciton complexes in self-assembled quantum dots

    Full text link
    We report on a multiband microscopic theory of many-exciton complexes in self-assembled quantum dots. The single particle states are obtained by three methods: single-band effective-mass approximation, the multiband kâ‹…pk\cdot p method, and the tight-binding method. The electronic structure calculations are coupled with strain calculations via Bir-Pikus Hamiltonian. The many-body wave functions of NN electrons and NN valence holes are expanded in the basis of Slater determinants. The Coulomb matrix elements are evaluated using statically screened interaction for the three different sets of single particle states and the correlated NN-exciton states are obtained by the configuration interaction method. The theory is applied to the excitonic recombination spectrum in InAs/GaAs self-assembled quantum dots. The results of the single-band effective-mass approximation are successfully compared with those obtained by using the of kâ‹…pk\cdot p and tight-binding methods.Comment: 10 pages, 8 figure

    Why do semi-analytic models predict higher scatter in the stellar mass-halo mass relation than cosmological hydrodynamic simulations?

    Full text link
    Semi-analytic models (SAMs) systematically predict higher stellar-mass scatter at a given halo mass than hydrodynamical simulations and most empirical models. Our goal is to investigate the physical origin of this scatter by exploring modifications to the physics in the SAM Dark Sage. We design two black hole formation models that approximate results from the IllustrisTNG 300-1 hydrodynamical simulation. In the first model, we assign a fixed black hole mass of 106 M⊙10^{6}\, \mathrm{M}_{\odot} to every halo that reaches 1010.5 M⊙10^{10.5}\, \mathrm{M}_{\odot}. In the second model, we disregard any black hole growth as implemented in the standard Dark Sage model. Instead, we force all black hole masses to follow the median black hole mass-halo mass relation in IllustrisTNG 300-1 with a fixed scatter. We find that each model on its own does not significantly reduce the scatter in stellar mass. To do this, we replace the native Dark Sage AGN feedback model with a simple model where we turn off cooling for galaxies with black hole masses above 108 M⊙10^{8}\, \mathrm{M}_{\odot}. With this additional modification, the SMBH seeding and fixed conditional distribution models find a significant reduction in the scatter in stellar mass at halo masses between 1011−14 M⊙10^{11-14}\, \mathrm{M}_{\odot}. These results suggest that AGN feedback in SAMs acts in a qualitatively different way than feedback implemented in cosmological simulations. Either or both may require substantial modification to match the empirically inferred scatter in the Stellar Mass Halo Mass Relation (SMHMR).Comment: 21 pages, 16 figure

    Current Switch by Coherent Trapping of Electrons in Quantum Dots

    Full text link
    We propose a new transport mechanism through tunnel-coupled quantum dots based on the coherent population trapping effect. Coupling to an excited level by the coherent radiation of two microwaves can lead to an extremely narrow current antiresonance. The effect can be used to determine interdot dephasing rates and is a mechanism for a very sensitive, optically controlled current switch.Comment: to appear in Phys. Rev. Let

    Transient current spectroscopy of a quantum dot in the Coulomb blockade regime

    Full text link
    Transient current spectroscopy is proposed and demonstrated in order to investigate the energy relaxation inside a quantum dot in the Coulomb blockade regime. We employ a fast pulse signal to excite an AlGaAs/GaAs quantum dot to an excited state, and analyze the non-equilibrium transient current as a function of the pulse length. The amplitude and time-constant of the transient current are sensitive to the ground and excited spin states. We find that the spin relaxation time is longer than, at least, a few microsecond.Comment: 5 pages, 3 figure

    Multi-Exciton Spectroscopy of a Single Self Assembled Quantum Dot

    Get PDF
    We apply low temperature confocal optical microscopy to spatially resolve, and spectroscopically study a single self assembled quantum dot. By comparing the emission spectra obtained at various excitation levels to a theoretical many body model, we show that: Single exciton radiative recombination is very weak. Sharp spectral lines are due to optical transitions between confined multiexcitonic states among which excitons thermalize within their lifetime. Once these few states are fully occupied, broad bands appear due to transitions between states which contain continuum electrons.Comment: 12 pages, 4 figures, submitted for publication on Jan,28 199

    Auxiliary-level-assisted operations with charge qubits in semiconductors

    Full text link
    We present a new scheme for rotations of a charge qubit associated with a singly ionized pair of donor atoms in a semiconductor host. The logical states of such a qubit proposed recently by Hollenberg et al. are defined by the lowest two energy states of the remaining valence electron localized around one or another donor. We show that an electron located initially at one donor site can be transferred to another donor site via an auxiliary molecular level formed upon the hybridization of the excited states of two donors. The electron transfer is driven by a single resonant microwave pulse in the case that the energies of the lowest donor states coincide or two resonant pulses in the case that they differ from each other. Depending on the pulse parameters, various one-qubit operations, including the phase gate, the NOT gate, and the Hadamard gate, can be realized in short times. Decoherence of an electron due to the interaction with acoustic phonons is analyzed and shown to be weak enough for coherent qubit manipulation being possible, at least in the proof-of-principle experiments on one-qubit devices.Comment: Extended version of cond-mat/0411605 with detailed discussion of phonon-induced decoherence including dephasing and relaxation; to be published in JET
    • …
    corecore