9,627 research outputs found

    Transform fault earthquakes in the North Atlantic: Source mechanisms and depth of faulting

    Get PDF
    The centroid depths and source mechanisms of 12 large earthquakes on transform faults of the northern Mid-Atlantic Ridge were determined from an inversion of long-period body waveforms. The earthquakes occurred on the Gibbs, Oceanographer, Hayes, Kane, 15 deg 20 min, and Vema transforms. The depth extent of faulting during each earthquake was estimated from the centroid depth and the fault width. The source mechanisms for all events in this study display the strike slip motion expected for transform fault earthquakes; slip vector azimuths agree to 2 to 3 deg of the local strike of the zone of active faulting. The only anomalies in mechanism were for two earthquakes near the western end of the Vema transform which occurred on significantly nonvertical fault planes. Secondary faulting, occurring either precursory to or near the end of the main episode of strike-slip rupture, was observed for 5 of the 12 earthquakes. For three events the secondary faulting was characterized by reverse motion on fault planes striking oblique to the trend of the transform. In all three cases, the site of secondary reverse faulting is near a compression jog in the current trace of the active transform fault zone. No evidence was found to support the conclusions of Engeln, Wiens, and Stein that oceanic transform faults in general are either hotter than expected from current thermal models or weaker than normal oceanic lithosphere

    Slow Dynamics in Glasses

    Full text link
    Minimalist theories of complex systems are broadly of two kinds: mean-field and axiomatic. So far all theories of complex properties absent from simple systems and intrinsic to glasses are axiomatic. Stretched Exponential Relaxation (SER) is the prototypical complex temporal property of glasses, discovered by Kohlrausch 150 years ago, and now observed almost universally in microscopically homogeneous, complex non-equilibrium materials, including luminescent electronic (Coulomb) glasses. Critical comparison of alternative axiomatic theories with both numerical simulations and experiments strongly favors dynamical trap models over static percolative or energy landscape models. PACS: 61.20.Lc; 67.40.F

    An Input Output Approach to the Analysis of Intercountry Differences in Per Capita Energy Consumption

    Get PDF
    Comparisons of energy consumption patterns in different countries can serve as a tool for identifying inefficiencies in the use of energy in individual countries. However, differences in terms of relations such as the use of energy per capita or per unit of GDP are not usually very good indicators of intercountry differences in the efficiency of energy use. Factors such as climatic conditions, the sectoral structure of the production system etc. often hide more basic differences in production methods and consumption patterns. Moreover, differences in production methods with similar output may not only be due to differences in the efficiency of energy utilization, but can be the result of intercountry differences in relative prices. In this study, input-output data for the Federal Republic of Germany, France and the Netherlands is used to identify intercountry differences in per capita consumption patterns which can be assigned to differences in production methods and domestic consumption patterns. It appears that such differences do exist. In particular the technologies used in the three countries differed significantly in terms of energy intensity. However, when these results were combined with data on relative prices, the observed differences in energy intensities in most cases were quite consistent with intercountry differences in relative prices. Thus, the observed differences between the sample countries do not seem to reflect intercountry differences in the efficiency of energy utilization

    Ordering in a frustrated pyrochlore antiferromagnet proximate to a spin liquid

    Full text link
    We perform a general study of spin ordering on the pyrochlore lattice with a 3:1 proportionality of two spin polarizations. Equivalently, this describes valence bond solid conformations of a quantum dimer model on the diamond lattice. We determine the set of likely low temperature ordered phases, on the assumption that the ordering is weak, i.e the system is close to a ``U(1)'' quantum spin liquid in which the 3:1 proportionality is maintained but the spins are strongly fluctuating. The nature of the 9 ordered states we find is determined by a ``projective symmetry'' analysis. All the phases exhibit translational and rotational symmetry breaking, with an enlarged unit cell containing 4 to 64 primitive cells of the underlying pyrochlore. The simplest of the 9 phases is the same ``R'' state found earlier in a theoretical study of the ordering on the magnetization plateau in the S=3/2S=3/2 materials \cdaf and \hgaf. We suggest that the spin/dimer model proposed therein undergoes a direct transition from the spin liquid to the R state, and describe a field theory for the universal properties of this critical point, at zero and non-zero temperatures

    Ariel - Volume 1 Number 1

    Get PDF
    Copyright 1969 Arie

    Generalized Paraxial Ray Trace Procedure Derived from Geodesic Deviation

    Full text link
    Paraxial ray tracing procedures have become widely accepted techniques for acoustic models in seismology and underwater acoustics. To date a generic form of these procedures including fluid motion and time dependence has not appeared in the literature. A detailed investigation of the characteristic curves of the equations of hydrodynamics allows for an immediate generalization of the procedure to be extracted from the equation form geodesic deviation. The general paraxial ray trace equations serve as an ideal supplement to ordinary ray tracing in predicting the deformation of acoustic beams in random environments. The general procedure is derived in terms of affine parameterization and in a coordinate time parameterization ideal for application to physical acoustic ray propagation. The formalism is applied to layered media, where the deviation equation reduces to a second order differential equation for a single field with a general solution in terms of a depth integral along the ray path. Some features are illustrated through special cases which lead to exact solutions in terms of either ordinary or special functions.Comment: Original; 40 pages (double spaced), 1 figure Replaced version; 36 pages single spaced, 7 figures. Expanded content; Complete derivation of the equations from the equations of hydrodynamics, introduction of an auxiliary basis for three dimensional wave-front modeling. Typos in text and equations correcte

    Aspects of Type 0 String Theory

    Get PDF
    A construction of compact tachyon-free orientifolds of the non-supersymmetric Type 0B string theory is presented. Moreover, we study effective non-supersymmetric gauge theories arising on self-dual D3-branes in Type 0B orbifolds and orientifolds.Comment: 9 pages, LATEX; submitted to Proceedings of Strings '9

    Scalable Parallel Numerical Constraint Solver Using Global Load Balancing

    Full text link
    We present a scalable parallel solver for numerical constraint satisfaction problems (NCSPs). Our parallelization scheme consists of homogeneous worker solvers, each of which runs on an available core and communicates with others via the global load balancing (GLB) method. The parallel solver is implemented with X10 that provides an implementation of GLB as a library. In experiments, several NCSPs from the literature were solved and attained up to 516-fold speedup using 600 cores of the TSUBAME2.5 supercomputer.Comment: To be presented at X10'15 Worksho

    Dirichlet Branes on Orientifolds

    Get PDF
    We consider the classification of BPS and non-BPS D-branes in orientifold models. In particular we construct all stable BPS and non-BPS D-branes in the Gimon-Polchinski (GP) and Dabholkar-Park-Blum-Zaffaroni (DPBZ) orientifolds and determine their stability regions in moduli space as well as decay products. We find several kinds of integrally and torsion charged non-BPS D-branes. Certain of these are found to have projective representations of the orientifold Ă—\times GSO group on the Chan-Paton factors. It is found that the GP orientifold is not described by equivariant orthogonal K-theory as may have been at first expected. Instead a twisted version of this K-theory is expected to be relevant.Comment: 33 pages, LaTeX, 5 figures. v2 typos corrected, references included, (4,s)-branes re-examine

    Spectral Representation for the Effective Macroscopic Response of a Polycrystal: Application to Third-Order Nonlinear Susceptibility

    Full text link
    Erratum: In our paper, we show that the spectral representation for isotropic two-component composites also applies to uniaxial polycrystals. We have learned that this result was, in fact, first conjectured by G.W. Milton. While our derivation is more detailed, our result for the spectral function is the same as Milton's. We very much regret not having been aware of this work at the time of writing our paper. Original abstract: We extend the spectral theory used for the calculation of the effective linear response functions of composites to the case of a polycrystalline material with uniaxially anisotropic microscopic symmetry. As an application, we combine these results with a nonlinear decoupling approximation as modified by Ma et al., to calculate the third-order nonlinear optical susceptibility of a uniaxial polycrystal, assuming that the effective dielectric function of the polycrystal can be calculated within the effective-medium approximation.Comment: v2 includes erratum and the original preprin
    • …
    corecore