31 research outputs found

    Electric Field Controlled Magnetic Anisotropy in a Single Molecule

    Full text link
    We have measured quantum transport through an individual Fe4_4 single-molecule magnet embedded in a three-terminal device geometry. The characteristic zero-field splittings of adjacent charge states and their magnetic field evolution are observed in inelastic tunneling spectroscopy. We demonstrate that the molecule retains its magnetic properties, and moreover, that the magnetic anisotropy is significantly enhanced by reversible electron addition / subtraction controlled with the gate voltage. Single-molecule magnetism can thus be electrically controlled

    Spintronic magnetic anisotropy

    Full text link
    An attractive feature of magnetic adatoms and molecules for nanoscale applications is their superparamagnetism, the preferred alignment of their spin along an easy axis preventing undesired spin reversal. The underlying magnetic anisotropy barrier --a quadrupolar energy splitting-- is internally generated by spin-orbit interaction and can nowadays be probed by electronic transport. Here we predict that in a much broader class of quantum-dot systems with spin larger than one-half, superparamagnetism may arise without spin-orbit interaction: by attaching ferromagnets a spintronic exchange field of quadrupolar nature is generated locally. It can be observed in conductance measurements and surprisingly leads to enhanced spin filtering even in a state with zero average spin. Analogously to the spintronic dipolar exchange field, responsible for a local spin torque, the effect is susceptible to electric control and increases with tunnel coupling as well as with spin polarization.Comment: 6 pages with 4 figures + 26 pages of Supplementary Informatio

    Charge transport through single molecules, quantum dots, and quantum wires

    Full text link
    We review recent progresses in the theoretical description of correlation and quantum fluctuation phenomena in charge transport through single molecules, quantum dots, and quantum wires. A variety of physical phenomena is addressed, relating to co-tunneling, pair-tunneling, adiabatic quantum pumping, charge and spin fluctuations, and inhomogeneous Luttinger liquids. We review theoretical many-body methods to treat correlation effects, quantum fluctuations, nonequilibrium physics, and the time evolution into the stationary state of complex nanoelectronic systems.Comment: 48 pages, 14 figures, Topical Review for Nanotechnolog

    Direct Observation of Magnetic Anisotropy in an Individual Fe4 Single-Molecule Magnet

    Get PDF
    We study three-terminal charge transport through individual Fe4 single-molecule magnets. Magnetic anisotropy of the single molecule is directly observed by introducing a spectroscopic technique based on measuring the position of the degeneracy point as a function of gate voltage and applied magnetic field. A nonlinear field-dependence is observed which changes by rotating the sample and is, thus, a direct proof of magnetic anisotropy. The sensitivity of this method allows us to observe small changes in the orientation and magnitude of the anisotropy in different charge states. We find that the easy axes in adjacent states are (almost) collinear

    Application of non-associative structures for construction of homomorphic cryptosystems

    No full text
    Гомоморфное шифрование позволяет выполнять некоторые математические преобразования с шифрованным текстом, в результате которых получается шифрованный текст, соответствующий результату выполнения заданного преобразования открытого текста. Известны так называемые полностью гомоморфные и частично гомоморфные шифрсистемы, различающиеся количеством допустимых для выполнения преобразований. Для построения подобных шифрсистем необходимо иметь гомоморфизм относительно хотя бы одной из выполняемых операций. В работе с использованием неассоциативных операций и системы Эль-Гамаля построен пример шифрсистемы, гомоморфной относительно двух выполняемых операций: групповой и квазигрупповой.</jats:p

    Direct Observation of Magnetic Anisotropy in an Individual Fe4 Single-Molecule Magnet

    No full text
    We study three-terminal charge transport through individual Fe4 single-molecule magnets. Magnetic anisotropy of the single molecule is directly observed by introducing a spectroscopic technique based on measuring the position of the degeneracy point as a function of gate voltage and applied magnetic field. A nonlinear field-dependence is observed which changes by rotating the sample and is, thus, a direct proof of magnetic anisotropy. The sensitivity of this method allows us to observe small changes in the orientation and magnitude of the anisotropy in different charge states. We find that the easy axes in adjacent states are (almost) collinear.QN/Quantum NanoscienceApplied Science
    corecore