2,115 research outputs found
Advances in All-Neural Speech Recognition
This paper advances the design of CTC-based all-neural (or end-to-end) speech
recognizers. We propose a novel symbol inventory, and a novel iterated-CTC
method in which a second system is used to transform a noisy initial output
into a cleaner version. We present a number of stabilization and initialization
methods we have found useful in training these networks. We evaluate our system
on the commonly used NIST 2000 conversational telephony test set, and
significantly exceed the previously published performance of similar systems,
both with and without the use of an external language model and decoding
technology
When is a Network a Network? Multi-Order Graphical Model Selection in Pathways and Temporal Networks
We introduce a framework for the modeling of sequential data capturing
pathways of varying lengths observed in a network. Such data are important,
e.g., when studying click streams in information networks, travel patterns in
transportation systems, information cascades in social networks, biological
pathways or time-stamped social interactions. While it is common to apply graph
analytics and network analysis to such data, recent works have shown that
temporal correlations can invalidate the results of such methods. This raises a
fundamental question: when is a network abstraction of sequential data
justified? Addressing this open question, we propose a framework which combines
Markov chains of multiple, higher orders into a multi-layer graphical model
that captures temporal correlations in pathways at multiple length scales
simultaneously. We develop a model selection technique to infer the optimal
number of layers of such a model and show that it outperforms previously used
Markov order detection techniques. An application to eight real-world data sets
on pathways and temporal networks shows that it allows to infer graphical
models which capture both topological and temporal characteristics of such
data. Our work highlights fallacies of network abstractions and provides a
principled answer to the open question when they are justified. Generalizing
network representations to multi-order graphical models, it opens perspectives
for new data mining and knowledge discovery algorithms.Comment: 10 pages, 4 figures, 1 table, companion python package pathpy
available on gitHu
The Happiness-Income Paradox Revisited
The striking thing about the happiness-income paradox is that over the long-term – usually a period of 10 y or more – happiness does not increase as a country's income rises. Heretofore the evidence for this was limited to developed countries. This article presents evidence that the long term nil relationship between happiness and income holds also for a number of developing countries, the eastern European countries transitioning from socialism to capitalism, and an even wider sample of developed countries than previously studied. It also finds that in the short-term in all three groups of countries, happiness and income go together, i.e., happiness tends to fall in economic contractions and rise in expansions. Recent critiques of the paradox, claiming the time series relationship between happiness and income is positive, are the result either of a statistical artifact or a confusion of the short-term relationship with the long-term one.Easterlin Paradox, life satisfaction, subjective well-being
The Microsoft 2016 Conversational Speech Recognition System
We describe Microsoft's conversational speech recognition system, in which we
combine recent developments in neural-network-based acoustic and language
modeling to advance the state of the art on the Switchboard recognition task.
Inspired by machine learning ensemble techniques, the system uses a range of
convolutional and recurrent neural networks. I-vector modeling and lattice-free
MMI training provide significant gains for all acoustic model architectures.
Language model rescoring with multiple forward and backward running RNNLMs, and
word posterior-based system combination provide a 20% boost. The best single
system uses a ResNet architecture acoustic model with RNNLM rescoring, and
achieves a word error rate of 6.9% on the NIST 2000 Switchboard task. The
combined system has an error rate of 6.2%, representing an improvement over
previously reported results on this benchmark task
The power of Bayesian evidence in astronomy
We discuss the use of the Bayesian evidence ratio, or Bayes factor, for model
selection in astronomy. We treat the evidence ratio as a statistic and
investigate its distribution over an ensemble of experiments, considering both
simple analytical examples and some more realistic cases, which require
numerical simulation. We find that the evidence ratio is a noisy statistic, and
thus it may not be sensible to decide to accept or reject a model based solely
on whether the evidence ratio reaches some threshold value. The odds suggested
by the evidence ratio bear no obvious relationship to the power or Type I error
rate of a test based on the evidence ratio. The general performance of such
tests is strongly affected by the signal to noise ratio in the data, the
assumed priors, and the threshold in the evidence ratio that is taken as
`decisive'. The comprehensiveness of the model suite under consideration is
also very important. The usefulness of the evidence ratio approach in a given
problem can be assessed in advance of the experiment, using simple models and
numerical approximations. In many cases, this approach can be as informative as
a much more costly full-scale Bayesian analysis of a complex problem.Comment: 11 pages; MNRAS in pres
Analysis of electroencephalograms in Alzheimer's disease patients with multiscale entropy
The aim of this study was to analyse the electroencephalogram (EEG) background activity of Alzheimer’s disease (AD) patients using the Multiscale Entropy (MSE). The MSE is a recently developed method that quantifies the regularity of a signal on different time scales. These time scales are inspected by means of several coarse-grained sequences formed from the analysed signals. We recorded the EEGs from 19 scalp electrodes in 11 AD patients and 11 age-matched controls and estimated the MSE profile for each epoch of the EEG recordings. The shape of the MSE profiles reveals the EEG complexity, and it suggests that the EEG contains information in deeper scales than the smallest one. Moreover, the results showed that the EEG background activity is less complex in AD patients than control subjects. We found significant difference
Simple Classification of Light Baryons
We introduce a classification number which describes the baryon mass
information in a fuzzy manner. According to and of baryons, we put
all known light baryons in a simple table in which some baryons with same (,
) are classified as members of known octets or decuplets. Meanwhile, we
predict two new possible octets.Comment: 5 latex pages, 5 tables, no figur
What makes a phase transition? Analysis of the random satisfiability problem
In the last 30 years it was found that many combinatorial systems undergo
phase transitions. One of the most important examples of these can be found
among the random k-satisfiability problems (often referred to as k-SAT), asking
whether there exists an assignment of Boolean values satisfying a Boolean
formula composed of clauses with k random variables each. The random 3-SAT
problem is reported to show various phase transitions at different critical
values of the ratio of the number of clauses to the number of variables. The
most famous of these occurs when the probability of finding a satisfiable
instance suddenly drops from 1 to 0. This transition is associated with a rise
in the hardness of the problem, but until now the correlation between any of
the proposed phase transitions and the hardness is not totally clear. In this
paper we will first show numerically that the number of solutions universally
follows a lognormal distribution, thereby explaining the puzzling question of
why the number of solutions is still exponential at the critical point.
Moreover we provide evidence that the hardness of the closely related problem
of counting the total number of solutions does not show any phase
transition-like behavior. This raises the question of whether the probability
of finding a satisfiable instance is really an order parameter of a phase
transition or whether it is more likely to just show a simple sharp threshold
phenomenon. More generally, this paper aims at starting a discussion where a
simple sharp threshold phenomenon turns into a genuine phase transition
- …
