1,522 research outputs found

    An HI survey of the Centaurus and Sculptor Groups - Constraints on the space density of low mass galaxies

    Get PDF
    We present results of two 21-cm HI surveys performed with the Australia Telescope Compact Array in the nearby Centaurus A and Sculptor galaxy groups. These surveys are sensitive to compact HI clouds and galaxies with HI masses as low as 3E+06 Msun, and are therefore among the most sensitive extragalactic HI surveys to date. The surveys consist of sparsely spaced pointings that sample approximately 2% of the groups' area on the sky. We detected previously known group members, but we found no new HI clouds or galaxies down to the sensitivity limit of the surveys. If the HI mass function had a faint end slope of alpha = 1.5 below M_{HI} = 10^{7.5} Msun in these groups, we would have expected ~3 new objects. Cold dark matter theories of galaxy formation predict the existence of a large number low mass DM sub-halos that might appear as tiny satellites in galaxy groups. Our results support and extend similar conclusions derived from previous HI surveys that a HI rich population of these satellites does not exist.Comment: Accepted for publication in A&

    Star Formation and Tidal Encounters with the Low Surface Brightness Galaxy UGC 12695 and Companions

    Full text link
    We present VLA H I observations of the low surface brightness galaxy UGC 12695 and its two companions, UGC 12687 and a newly discovered dwarf galaxy 2333+1234. UGC 12695 shows solid body rotation but has a very lopsided morphology of the H I disk, with the majority of the H I lying in the southern arm of the galaxy. The H I column density distribution of this very blue, LSB galaxy coincides in detail with its light distribution. Comparing the H I column density of UGC 12695 with the empirical (but not well understood) value of Sigma_c = 10E21 atoms/cm^2 found in, i.e., Skillman's 1986 paper shows the star formation to be a local affair, occurring only in those regions where the column density is above this star formation threshold. The low surface brightness nature of this galaxy could thus be attributed to an insufficient gas surface density, inhibiting star formation on a more global scale. Significantly, though, the Toomre criterion places a much lower critical density on the galaxy (+/-10E20 atoms/cm^2), which is shown by the galaxy's low SFR to not be applicable. Within a projected distance of 300kpc/30kms of UGC 12695 lie two companion galaxies - UGC 12687, a high surface brightness barred spiral galaxy, and 2333+1234, a dwarf galaxy discovered during this investigation. The close proximity of the three galaxies, combined with UGC 12695's extremely blue color and regions of localized starburst and UGC 12687's UV excess bring to mind mutually induced star formation through tidal activity.Comment: 14 pages, 8 figures (2 color), To be published in A.J., May 2000

    Comparing Galaxies and Lyman Alpha Absorbers at Low Redshift

    Full text link
    A scenario is explored in which Lyman alpha absorbers at low redshift arise from lines of sight through extended galaxy disks, including those of dwarf and low surface brightness galaxies. A population of galaxies is simulated based upon observed distributions of galaxy properties, and the gas disks are modeled using pressure and gravity confinement. Some parameter values are ruled out by comparing simulation results with the observed galaxy luminosity function, and constraints may be made on the absorbing cross sections of galaxies. Simulation results indicate that it is difficult to match absorbers with particular galaxies observationally since absorption typically occurs at high impact parameters (>200 kpc) from luminous galaxies. Low impact parameter absorption is dominated by low luminosity dwarfs. A large fraction of absorption lines is found to originate from low surface brightness galaxies, so that the absorbing galaxy is likely to be misidentified. Low redshift Lyman alpha absorber counts can easily be explained by moderately extended galaxy disks when low surface brightness galaxies are included, and it is easily possible to find a scenario which is consistent with observed the galaxy luminosity function, with low redshift Lyman limit absorber counts, and with standard nucleosynthesis predictions of the baryon density, Omega_Baryon.Comment: 17 pages, 8 figures, accepted to the Astrophysical Journa

    A Structural and Dynamical Study of Late-Type, Edge-On Galaxies: I. Sample Selection and Imaging Data

    Get PDF
    We present optical (B & R) and infrared (K_s) images and photometry for a sample of 49 extremely late-type, edge-on disk galaxies selected from the Flat Galaxy Catalog of Karenchentsev et al. (1993). Our sample was selected to include galaxies with particularly large axial ratios, increading the likelihood that the galaxies in the sample are truly edge-on. We have also concentrated the sample on galaxies with low apparent surface brightness, in order to increase the representation of intrinisically low surface brightness galaxies. Finally, the sample was chosen to have no apprarent bulges or optical warps so that the galaxies represent undisturbed, ``pure disk'' systems. The resulting sample forms the basis for a much larger spectroscopic study designed to place constraints on the physical quantities and processes which shape disk galaxies. The imaging data presented in this paper has been painstakingly reduced and calibrated to allow accurate surface photometry of features as faint as 30 mag/sqr-arcsec in B and 29 mag/sqr-arcsec in R on scales larger than 10 arcsec. Due to limitations in sky subtraction and flat fielding, the infrared data can reach only to 22.5 mag/sqr-arcsec in K_s on comparable scales. As part of this work, we have developed a new method for quantifying the reliability of surface photometry, which provides useful diagnostics for the presence of scattered light, optical emission from infrared cirrus, and other sources of non-uniform sky backgrounds.Comment: scheduled to appear in the Astronomical Journal, LaTeX, 36 pages including 7 pages of figures (fig 1-2,4). A low resolution version of Figure 3 is included in JPEG format; contours are seriously degraded. A full resolution Postscript version of Figure 3 (10.6Mb,gzipped) is available through anonymous ftp at ftp://ftp.astro.washington.edu/pub/users/jd/FGC/dalcanton.f3.ps.g

    The velocity function of gas-rich galaxies

    Full text link
    We measure the distribution function of rotational velocities phi(V_c) of late-type galaxies from the HIPASS galaxy catalogue. Previous measurements of the late-type velocity function are indirect, derived by converting the galaxy luminosity function using the relation between galaxy luminosity and rotation velocity (the Tully-Fisher relation). The advantage of HIPASS is that space densities and velocity widths are both derived from the same survey data. We find good agreement with earlier inferred measurements of phi(V_c), but we are able to define the space density of objects with V_c as low as 30 km/s. The measured velocity function is `flat' (power-law slope alpha ~ -1.0) below V_c = 100 km/s. We compare our results with predictions based on LCDM simulations and find good agreement for rotational velocities in excess of 100 km/s, but at lower velocities current models over-predict the space density of objects. At V_c=30 km/s this discrepancy is approximately a factor 20.Comment: 9 pages, 7 figures. Accepted for publication in MNRA

    The stellar disk thickness of LSB galaxies

    Full text link
    We present surface photometry results for a sample of eleven edge-on galaxies observed with the 6m telescope at the Special Astrophysical Observatory (Russia). The photometric scale length, scale height, and central surface brightness of the stellar disks of our sample galaxies are estimated. We show that four galaxies in our sample, which are visually referred as objects of the lowest surface brightness class in the Revised Flat Galaxies Catalog, have bona fide low surface brightness (LSB) disks. We find from the comparison of photometric scales that the stellar disks of LSB galaxies are thinner than those of high surface brightness (HSB) ones. There is a clear correlation between the central surface brightness of the stellar disk and its vertical to radial scale ratio. The masses of spherical subsystems (dark halo + bulge) and the dark halo masses are obtained for the sample galaxies based on the thickness of their stellar disks. The LSB galaxies tend to harbor more massive spherical subsystems than the HSB objects, whereas no systematic difference in the dark halo masses between LSB and HSB galaxies is found. At the same time, the inferred mass-to-luminosity ratio for the LSB disks appears to be systematically higher than for HSB disks.Comment: 33 pages with 17 Postscript figures, uses aastex.cls, accepted by Ap

    Reconciling the local galaxy population with damped Ly-alpha cross sections and metal abundances

    Get PDF
    A comprehensive analysis of 355 high-quality WSRT HI 21-cm line maps of nearby galaxies shows that the properties and incident rate of Damped Lyman-alpha (DLA) absorption systems observed in the spectra of high redshift QSOs are in good agreement with DLAs originating in gas disks of galaxies like those in the z~0 population. Comparison of low-z DLA statistics with the HI incidence rate and column density distribution f(N) for the local galaxy sample shows no evidence for evolution in the integral "cross section density" below z~1.5, implying that there is no need for a hidden population of galaxies or HI clouds to contribute significantly to the DLA cross section. Compared with z~4, our data indicates evolution of a factor of two in the comoving density along a line of sight. We find that dN/dz(z=0)=0.045 +/- 0.006. The idea that the local galaxy population can explain the DLAs is further strengthened by comparing the properties of DLAs and DLA galaxies with the expectations based on our analysis of local galaxies. The distribution of luminosities of DLA host galaxies, and of impact parameters between QSOs and the centres of DLA galaxies, are in good agreement with what is expected from local galaxies. Approximately 87% of low z DLA galaxies are expected to be fainter than L* and 37 per cent have impact parameters less than 1'' at z=0.5. The analysis shows that some host galaxies with very low impact parameters and low luminosities are expected to be missed in optical follow up surveys. The well-known metallicity-luminosity relation in galaxies, in combination with metallicity gradients in galaxy disks, cause the expected median metallicity of low redshift DLAs to be low (~1/7 solar), which is also in good agreement with observations of low z DLAs. (Abridged)Comment: 22 pages, 22 figures. Accepted for publication in MNRAS. Fixed typo

    Tidal stirring and the origin of dwarf spheroidals in the Local Group

    Get PDF
    N-Body/SPH simulations are used to study the evolution of dwarf irregular galaxies (dIrrs) entering the dark matter halo of the Milky Way or M31 on plunging orbits. We propose a new dynamical mechanism driving the evolution of gas rich, rotationally supported dIrrs, mostly found at the outskirts of the Local Group (LG), into gas free, pressure supported dwarf spheroidals (dSphs) or dwarf ellipticals (dEs), observed to cluster around the two giant spirals. The initial model galaxies are exponential disks embedded in massive dark matter halos and reproduce nearby dIrrs. Repeated tidal shocks at the pericenter of their orbit partially strip their halo and disk and trigger dynamical instabilities that dramatically reshape their stellar component. After only 2-3 orbits low surface brightness (LSB) dIrrs are transformed into dSphs, while high surface brightness (HSB) dIrrs evolve into dEs. This evolutionary mechanism naturally leads to the morphology-density relation observed for LG dwarfs. Dwarfs surrounded by very dense dark matter halos, like the archetypical dIrr GR8, are turned into Draco or Ursa Minor, the faintest and most dark matter dominated among LG dSphs. If disks include a gaseous component, this is both tidally stripped and consumed in periodic bursts of star formation. The resulting star formation histories are in good qualitative agreement with those derived using HST color-magnitude diagrams for local dSphs.Comment: 5 pages, 5 figures, to appear on ApJL. Simulation images and movies can be found at the Local Group web page at http://pcblu.uni.mi.astro.it/~lucio/LG/LG.htm

    The Tully-Fisher relation for low surface brightness galaxies - implications for galaxy evolution

    Get PDF
    We present the B band Tully-Fisher relation for Low Surface Brightness (LSB) galaxies. These LSB galaxies follow the same Tully-Fisher relation as normal spiral galaxies. This implies that the mass-to-light ratio (M/L) of LSB galaxies is typically a factor of 2 larger than that of normal galaxies of the same total luminosity and morphological type. Since the dynamical mass of a galaxy is related to the rotation velocity and scale length via M \propto V^2 h, at fixed linewidth LSB galaxies must be twice as large as normal galaxies. This is confirmed by examining the relation between scale length and linewidth for LSB and normal galaxies. The universal nature of the Tully-Fisher relation can be understood if LSB galaxies are galaxies with low mass surface density, \sigma. The mass surface density apparently controls the luminosity evolution of a galaxy such as to keep the product \sigma M/L constant.Comment: 9 pages, PostScript. Accepted for publication in Monthly Notices of the Royal Astronomical Societ

    A Unified Scaling Law in Spiral Galaxies

    Get PDF
    We investigate the origin of a unified scaling relation in spiral galaxies. Observed spiral galaxies are spread on a plane in the three-dimensionallogarithmic space of luminosity L, radius R and rotation velocity V. The plane is expressed as L(VR)αL \propto (V R)^{\alpha} in I-passband, where α\alpha is a constant. On the plane, observed galaxies are distributed in an elongated region which looks like the shape of a surfboard. The well-known scaling relations, L-V (Tully-Fisher relation), V-R (also the Tully-Fisher relation) and R-L (Freeman's law), can be understood as oblique projections of the surfboard-like plane into 2-D spaces. This unified interpretation of the known scaling relations should be a clue to understand the physical origin of all the relations consistently. Furthermore, this interpretation can also explain why previous studies could not find any correlation between TF residuals and radius. In order to clarify the origin of this plane, we simulate formation and evolution of spiral galaxies with the N-body/SPH method, including cooling, star formation and stellar feedback. Initial conditions are set to isolated 14 spheres with two free parameters, such as mass and angular momentum. The CDM (h=0.5, Ω0=1\Omega_0=1) cosmology is considered as a test case. The simulations provide the following two conclusions: (a) The slope of the plane is well reproduced but the zero-point is not. This zero-point discrepancy could be solved in a low density ($\Omega_00.5) cosmology. (b) The surfboard-shaped plane can be explained by the control of galactic mass and angular momentum.Comment: Accepted for publication in ApJ Letters. 6 pages including 2 figure
    corecore