6,433 research outputs found

    Transition-metal silicides lattice-matched to silicon

    Get PDF
    We have used a systematic search to determine all the possible transition-metal silicides that are geometrically lattice-matched to either the (100), (110), or the (111) face of silicon. A short table with the best possible matches is presented here, and a more comprehensive table including slightly worse matches is deposited with the editor

    Exact quantum query complexity of EXACTk,ln\rm{EXACT}_{k,l}^n

    Full text link
    In the exact quantum query model a successful algorithm must always output the correct function value. We investigate the function that is true if exactly kk or ll of the nn input bits given by an oracle are 1. We find an optimal algorithm (for some cases), and a nontrivial general lower and upper bound on the minimum number of queries to the black box.Comment: 19 pages, fixed some typos and constraint

    3D PROCESS MODELLING ON PERSONAL COMPUTERS

    Get PDF
    A method for reducing the computation needs of modellingcomplete fabrication processes for VLSI devices on personal computers in 3 dimensions, a treatment of equitations of basic physical processes, such as diffusion, oxidation, implantation, etching and deposition is presented. In the paper we will describe the structure of the TEDI (TechnologyDialog) program, the main formulas and principles of the models and some examples of 3D process simulation. The third part of the "TEDI" program (creating a set of control parameters, automatic simulation and graphical output of results) provides flexible possibilities of studyingthe connections between 1D, 2D and 3D simulations

    Lattice match: An application to heteroepitaxy

    Get PDF
    We define the concept of lattice match for any pair of crystal lattices in any given crystal direction, allowing for a periodic reconstruction of the interface. An algorithm for a systematic search for all possible matches is developed, and some examples of nonstandard lattice matches are given for CdTe on GaAs and sapphire to illustrate the method. For the case of CdTe on GaAs, our results agree with published results, both with respect to growth plane and orientation for CdTe(111) on GaAs(100). For CdTe on sapphire, our results agree with published results with respect to growth plane

    Temporal Variability of Urinary Phthalate Metabolite Levels in Men of Reproductive Age

    Get PDF
    Phthalates are a family of multifunctional chemicals widely used in personal care and other consumer products. The ubiquitous use of phthalates results in human exposure through multiple sources and routes, including dietary ingestion, dermal absorption, inhalation, and parenteral exposure from medical devices containing phthalates. We explored the temporal variability over 3 months in urinary phthalate metabolite levels among 11 men who collected up to nine urine samples each during this time period. Eight phthalate metabolites were measured by solid-phase extraction–high-performance liquid chromatography–tandem mass spectrometry. Statistical analyses were performed to determine the between- and within-subject variance apportionment, and the sensitivity and specificity of a single urine sample to classify a subject’s 3-month average exposure. Five of the eight phthalates were frequently detected. Monoethyl phthalate (MEP) was detected in 100% of samples; monobutyl phthalate, monobenzyl phthalate, mono-2-ethylhexyl phthalate (MEHP), and monomethyl phthalate were detected in > 90% of samples. Although we found both substantial day-to-day and month-to-month variability in each individual’s urinary phthalate metabolite levels, a single urine sample was moderately predictive of each subject’s exposure over 3 months. The sensitivities ranged from 0.56 to 0.74. Both the degree of between- and within-subject variance and the predictive ability of a single urine sample differed among phthalate metabolites. In particular, a single urine sample was most predictive for MEP and least predictive for MEHP. These results suggest that the most efficient exposure assessment strategy for a particular study may depend on the phthalates of interest

    Exotic magnetism on the quasi-FCC lattices of the d3d^3 double perovskites La2_2NaB'O6_6 (B' == Ru, Os)

    Full text link
    We find evidence for long-range and short-range (ζ\zeta == 70 \AA~at 4 K) incommensurate magnetic order on the quasi-face-centered-cubic (FCC) lattices of the monoclinic double perovskites La2_2NaRuO6_6 and La2_2NaOsO6_6 respectively. Incommensurate magnetic order on the FCC lattice has not been predicted by mean field theory, but may arise via a delicate balance of inequivalent nearest neighbour and next nearest neighbour exchange interactions. In the Ru system with long-range order, inelastic neutron scattering also reveals a spin gap Δ\Delta \sim 2.75 meV. Magnetic anisotropy is generally minimized in the more familiar octahedrally-coordinated 3d33d^3 systems, so the large gap observed for La2_2NaRuO6_6 may result from the significantly enhanced value of spin-orbit coupling in this 4d34d^3 material.Comment: 5 pages, 4 figure

    On the expressive power of read-once determinants

    Full text link
    We introduce and study the notion of read-kk projections of the determinant: a polynomial fF[x1,,xn]f \in \mathbb{F}[x_1, \ldots, x_n] is called a {\it read-kk projection of determinant} if f=det(M)f=det(M), where entries of matrix MM are either field elements or variables such that each variable appears at most kk times in MM. A monomial set SS is said to be expressible as read-kk projection of determinant if there is a read-kk projection of determinant ff such that the monomial set of ff is equal to SS. We obtain basic results relating read-kk determinantal projections to the well-studied notion of determinantal complexity. We show that for sufficiently large nn, the n×nn \times n permanent polynomial PermnPerm_n and the elementary symmetric polynomials of degree dd on nn variables SndS_n^d for 2dn22 \leq d \leq n-2 are not expressible as read-once projection of determinant, whereas mon(Permn)mon(Perm_n) and mon(Snd)mon(S_n^d) are expressible as read-once projections of determinant. We also give examples of monomial sets which are not expressible as read-once projections of determinant

    Fermi-level position at a semiconductor-metal interface

    Get PDF
    We have investigated the phenomenon of Fermi-level pinning by charged defects at the semiconductor-metal interface. Two limiting cases were investigated. In the first case we modeled an infinitely thick metallic coverage. In the second case we modeled a submonolayer coverage by using a free semiconductor surface containing defects. In both cases we assumed that most of the defect-induced interface states are localized inside the semiconductor, not more than a few angstroms away from the metal. Under these conditions we have estimated the difference in Fermi-level position between n- and p-type semiconductors to be less than 0.05 eV in the case of a thick metallic coverage. This difference was shown to be the maximum possible one, and it occurs only when there is no pinning. When there is pinning, this difference is even smaller. No such upper bound on the difference in Fermi-level position exists in the case of submonolayer coverage. We have also found that the defect density required to pin the Fermi level is ∼10^14 cm^-2 in the case of a thick metallic coverage, but only ∼10^12 cm^-2 in the case of a submonolayer coverage

    Lattice match: An application to heteroepitaxy

    Full text link
    corecore