835 research outputs found
Ancient and Recent Positive Selection Transformed Opioid cis-Regulation in Humans
Changes in the cis-regulation of neural genes likely contributed to the evolution of our species' unique attributes, but evidence of a role for natural selection has been lacking. We found that positive natural selection altered the cis-regulation of human prodynorphin, the precursor molecule for a suite of endogenous opioids and neuropeptides with critical roles in regulating perception, behavior, and memory. Independent lines of phylogenetic and population genetic evidence support a history of selective sweeps driving the evolution of the human prodynorphin promoter. In experimental assays of chimpanzeeâhuman hybrid promoters, the selected sequence increases transcriptional inducibility. The evidence for a change in the response of the brain's natural opioids to inductive stimuli points to potential human-specific characteristics favored during evolution. In addition, the pattern of linked nucleotide and microsatellite variation among and within modern human populations suggests that recent selection, subsequent to the fixation of the human-specific mutations and the peopling of the globe, has favored different prodynorphin cis-regulatory alleles in different parts of the world
In vivo tracking of human neural progenitor cells in the rat brain using bioluminescence imaging
AbstractBackgroundStem cell therapies appear promising for treating certain neurodegenerative disorders and molecular imaging methods that track these cells in vivo could answer some key questions regarding their survival and migration. Bioluminescence imaging (BLI), which relies on luciferase expression in these cells, has been used for this purpose due to its high sensitivity.New methodIn this study, we employ BLI to track luciferase-expressing human neural progenitor cells (hNPCLuc2) in the rat striatum long-term.ResultsWe show that hNPCLuc2 are detectable in the rat striatum. Furthermore, we demonstrate that using this tracking method, surviving grafts can be detected in vivo for up to 12 weeks, while those that were rejected do not produce bioluminescence signal. We also demonstrate the ability to discern hNPCLuc2 contralateral migration.Comparison with existing methodsSome of the advantages of BLI compared to other imaging methods used to track progenitor/stem cells include its sensitivity and specificity, low background signal and ability to distinguish surviving grafts from rejected ones over the long term while the bloodâbrain barrier remains intact.ConclusionsThese new findings may be useful in future preclinical applications developing cell-based treatments for neurodegenerative disorders
Increased serum neurofilament light chain concentration indicates poor outcome in Guillain-Barré syndrome
BACKGROUND
Guillain-Barré syndrome (GBS) is an autoimmune disease that results in demyelination and axonal damage. Five percent of patients die and 20% remain significantly disabled on recovery. Recovery is slow in most cases and eventual disability is difficult to predict, especially early in the disease. Blood or cerebrospinal fluid (CSF) biomarkers that could help identify patients at risk of poor outcome are required. We measured serum neurofilament light chain (sNfL) concentrations from blood taken upon admission and investigated a correlation between sNfL and clinical outcome.
METHODS
Baseline sNfL levels in 27 GBS patients were compared with a control group of 22 patients with diagnoses not suggestive of any axonal damage. Clinical outcome parameters for GBS patients included (i) the Hughes Functional Score (HFS) at admission, nadir, and discharge; (ii) the number of days hospitalised; and (iii) whether intensive care was necessary.
RESULTS
The median sNfL concentration in our GBS sample on admission was 85.5âpg/ml versus 9.1âpg/ml in controls. A twofold increase in sNfL concentration at baseline was associated with an HFS increase of 0.6 at nadir and reduced the likelihood of discharge with favourable outcome by a factor of almost three. Higher sNfL levels upon admission correlated well with hospitalisation time (rsâ=â0.69, pâ<â0.0001), during which transfer to intensive care occurred more frequently at an odds ratio of 2.4. Patients with baseline sNfL levels below 85.5âpg/ml had a 93% chance of being discharged with an unimpaired walking ability.
CONCLUSIONS
sNfL levels measured at hospital admission correlated with clinical outcome in GBS patients. These results represent amounts of acute axonal damage and reflect mechanisms resulting in disability in GBS. Thus, sNfL may serve as a convenient blood-borne biomarker to personalise patient care by identifying those at higher risk of poor outcome
Laser operation of Ga(NAsP) lattice-matched to (001) silicon substrate
The lattice-matched growth of the direct band gap material Ga(NAsP) is a seminal concept for the monolithic integration of III/V laser on a silicon substrate. Here, we report on the growth, characterization, and lasing properties of Ga(NAsP)/(BGa)(AsP) multi quantum well heterostructures embedded in (BGa)P cladding layers which were deposited on an exactly oriented (001) Si substrate. Structural investigations confirm a high crystal quality without any indication for misfit or threading dislocation formation. Laser operation between 800 nm and 900 nm of these broad area device structures was achieved under optical pumping as well as electrical injection for temperatures up to 150 K. This âproof of principleâ points to the enormous potential of Ga(NAsP) as an optical complement to Si microelectronics
Five views of a secret: does cognition change during middle adulthood?
This study examined five aspects of change (or
stability) in cognitive abilities in middle adulthood across a
12-year period. Data come from the Interdisciplinary Study
on Adult Development. The sample consisted of N = 346
adults (43.8 years on average, 48.6% female). In total, 11
cognitive tests were administered to assess fluid and crystallized
intelligence, memory, and processing speed. In a
first series of analyses, strong measurement invariance was
established. Subsequently, structural stability, differential
stability, stability of divergence, absolute stability, and the
generality of changes were examined. Factor covariances
were shown to be equal across time, implying structural
stability. Stability coefficients were around .90 for fluid and
crystallized intelligence, and speed, indicating high, yet not
perfect differential stability. The coefficient for memory
was .58. Only in processing speed the variance increased
across time, indicating heterogeneity in interindividual
development. Significant mean-level changes emerged,
with an increase in crystallized intelligence and decline in
the other three abilities. A number of correlations among
changes in cognitive abilities were significant, implying
that cognitive change
Rare Variants in PLXNA4 and Parkinson's Disease.
Approximately 20% of individuals with Parkinson's disease (PD) report a positive family history. Yet, a large portion of causal and disease-modifying variants is still unknown. We used exome sequencing in two affected individuals from a family with late-onset familial PD followed by frequency assessment in 975 PD cases and 1014 ethnically-matched controls and linkage analysis to identify potentially causal variants. Based on the predicted penetrance and the frequencies, a variant in PLXNA4 proved to be the best candidate and PLXNA4 was screened for additional variants in 862 PD cases and 940 controls, revealing an excess of rare non-synonymous coding variants in PLXNA4 in individuals with PD. Although we cannot conclude that the variant in PLXNA4 is indeed the causative variant, these findings are interesting in the light of a surfacing role of axonal guidance mechanisms in neurodegenerative disorders but, at the same time, highlight the difficulties encountered in the study of rare variants identified by next-generation sequencing in diseases with autosomal dominant or complex patterns of inheritance
A common genetic factor for Parkinson disease in ethnic Chinese population in Taiwan
BACKGROUND: Parkinson's disease (PD) is the most common neurodegenerative movement disorder, characterized clinically by resting tremor, bradykinesia, postural instability and rigidity. The prevalence of PD is approximately 2% of the population over 65 years of age and 1.7 million PD patients (age â„ 55 years) live in China. Recently, a common LRRK2 variant Gly2385Arg was reported in ethnic Chinese PD population in Taiwan. We analyzed the frequency of this variant in our independent PD case-control population of Han Chinese from Taiwan. METHODS: 305 patients and 176 genetically unrelated healthy controls were examined by neurologists and the diagnosis of PD was based on the published criteria. The region of interest was amplified with standard polymerase chain reaction (PCR). PCR fragments then were directly sequenced in both forward and reverse directions. Differences in genotype frequencies between groups were assessed by the X(2 )test, while X(2 )analysis was used to test for the Hardy-Weinberg equilibrium. RESULTS: Of the 305 patients screened we identified 27 (9%) with heterozygous G2385R variant. This mutation was only found in 1 (0.5%) in our healthy control samples (odds ratio = 16.99, 95% CI: 2.29 to 126.21, p = 0.0002). Sequencing of the entire open reading frame of LRRK2 in G2385R carriers revealed no other variants. CONCLUSION: These data suggest that the G2385R variant contributes significantly to the etiology of PD in ethnic Han Chinese individuals. With consideration of the enormous and expanding aging Chinese population in mainland China and in Taiwan, this variant is probably the most common known genetic factor for PD worldwide
LRRK2 in Parkinson's disease â drawing the curtain of penetrance: a commentary
Parkinson's disease is the most common neurodegenerative movement disorder and affects about 2% of the population over the age of 60 years. In 2004, mutations in the LRRK2 gene were first described and turned out to be the most frequent genetic cause of familial and sporadic Parkinson's disease and may account for up to 40% of patients in distinct populations. Based on these findings, Latourelle and colleagues show that the penetrance of the most common LRRK2 mutation is higher in patients with familial compared with sporadic Parkinson's disease and identified a substantial number of affected relatives of mutation carriers not presenting with a LRRK2 mutation themselves. This commentary discusses the role of genetic and/or environmental susceptibility factors modulating the expressivity of the disease trait, how these factors may contribute to the phenomenon of phenocopies in genetically defined Parkinson's disease pedigrees, and how the findings of Latourelle and colleagues, published this month in BMC Medicine, relate to current concepts of genetic counselling
- âŠ