824 research outputs found

    Hydrodynamic and Brownian Fluctuations in Sedimenting Suspensions

    Get PDF
    We use a mesoscopic computer simulation method to study the interplay between hydrodynamic and Brownian fluctuations during steady-state sedimentation of hard sphere particles for Peclet numbers (Pe) ranging from 0.1 to 15. Even when the hydrodynamic interactions are an order of magnitude weaker than Brownian forces, they still induce backflow effects that dominate the reduction of the average sedimentation velocity with increasing particle packing fraction. Velocity fluctuations, on the other hand, begin to show nonequilibrium hydrodynamic character for Pe > 1Comment: 4 pages 4 figures, RevTex, to appear in Phys. Rev. Lett. New version with some minor correction

    Exploring More-Coherent Quantum Annealing

    Full text link
    In the quest to reboot computing, quantum annealing (QA) is an interesting candidate for a new capability. While it has not demonstrated an advantage over classical computing on a real-world application, many important regions of the QA design space have yet to be explored. In IARPA's Quantum Enhanced Optimization (QEO) program, we have opened some new lines of inquiry to get to the heart of QA, and are designing testbed superconducting circuits and conducting key experiments. In this paper, we discuss recent experimental progress related to one of the key design dimensions: qubit coherence. Using MIT Lincoln Laboratory's qubit fabrication process and extending recent progress in flux qubits, we are implementing and measuring QA-capable flux qubits. Achieving high coherence in a QA context presents significant new engineering challenges. We report on techniques and preliminary measurement results addressing two of the challenges: crosstalk calibration and qubit readout. This groundwork enables exploration of other promising features and provides a path to understanding the physics and the viability of quantum annealing as a computing resource.Comment: 7 pages, 3 figures. Accepted by the 2018 IEEE International Conference on Rebooting Computing (ICRC

    A Numerical Model for Brownian Particles Fluctuating in Incompressible Fluids

    Full text link
    We present a numerical method that consistently implements thermal fluctuations and hydrodynamic interactions to the motion of Brownian particles dispersed in incompressible host fluids. In this method, the thermal fluctuations are introduced as random forces acting on the Brownian particles. The hydrodynamic interactions are introduced by directly resolving the fluid motions with the particle motion as a boundary condition to be satisfied. The validity of the method has been examined carefully by comparing the present numerical results with the fluctuation-dissipation theorem whose analytical form is known for dispersions of a single spherical particle. Simulations are then performed for more complicated systems, such as a dispersion composed of many spherical particles and a single polymeric chain in a solvent.Comment: 6 pages, 8 figure

    Anneal-path correction in flux qubits

    Full text link
    Quantum annealers require accurate control and optimized operation schemes to reduce noise levels, in order to eventually demonstrate a computational advantage over classical algorithms. We study a high coherence four-junction capacitively shunted flux qubit (CSFQ), using dispersive measurements to extract system parameters and model the device. Josephson junction asymmetry inherent to the device causes a deleterious nonlinear cross-talk when annealing the qubit. We implement a nonlinear annealing path to correct the asymmetry in-situ, resulting in a substantial increase in the probability of the qubit being in the correct state given an applied flux bias. We also confirm the multi-level structure of our CSFQ circuit model by annealing it through small spectral gaps and observing quantum signatures of energy level crossings. Our results demonstrate an anneal-path correction scheme designed and implemented to improve control accuracy for high-coherence and high-control quantum annealers, which leads to an enhancement of success probability in annealing protocols.Comment: v2 published versio

    DISTRIBUTION OF CRAYFISH IN SALZBURG, AUSTRIA

    Full text link

    The MOSDEF survey: a stellar mass-SFR-metallicity relation exists at z2.3z\sim2.3

    Full text link
    We investigate the nature of the relation among stellar mass, star-formation rate, and gas-phase metallicity (the M_*-SFR-Z relation) at high redshifts using a sample of 260 star-forming galaxies at z2.3z\sim2.3 from the MOSDEF survey. We present an analysis of the high-redshift M_*-SFR-Z relation based on several emission-line ratios for the first time. We show that a M_*-SFR-Z relation clearly exists at z2.3z\sim2.3. The strength of this relation is similar to predictions from cosmological hydrodynamical simulations. By performing a direct comparison of stacks of z0z\sim0 and z2.3z\sim2.3 galaxies, we find that z2.3z\sim2.3 galaxies have 0.1\sim0.1 dex lower metallicity at fixed M_* and SFR. In the context of chemical evolution models, this evolution of the M_*-SFR-Z relation suggests an increase with redshift of the mass-loading factor at fixed M_*, as well as a decrease in the metallicity of infalling gas that is likely due to a lower importance of gas recycling relative to accretion from the intergalactic medium at high redshifts. Performing this analysis simultaneously with multiple metallicity-sensitive line ratios allows us to rule out the evolution in physical conditions (e.g., N/O ratio, ionization parameter, and hardness of the ionizing spectrum) at fixed metallicity as the source of the observed trends with redshift and with SFR at fixed M_* at z2.3z\sim2.3. While this study highlights the promise of performing high-order tests of chemical evolution models at high redshifts, detailed quantitative comparisons ultimately await a full understanding of the evolution of metallicity calibrations with redshift.Comment: 19 pages, 8 figures, accepted to Ap

    Blocking NMDAR Disrupts Spike Timing and Decouples Monkey Prefrontal Circuits: Implications for Activity-Dependent Disconnection in Schizophrenia

    Get PDF
    We employed multi-electrode array recording to evaluate the influence of NMDA receptors (NMDAR) on spike-timing dynamics in prefrontal networks of monkeys as they performed a cognitive control task measuring specific deficits in schizophrenia. Systemic, periodic administration of an NMDAR antagonist (phencyclidine) reduced the prevalence and strength of synchronous (0-lag) spike correlation in simultaneously recorded neuron pairs. We employed transfer entropy analysis to measure effective connectivity between prefrontal neurons at lags consistent with monosynaptic interactions and found that effective connectivity was persistently reduced following exposure to the NMDAR antagonist. These results suggest that a disruption of spike timing and effective connectivity might be interrelated factors in pathogenesis, supporting an activity-dependent disconnection theory of schizophrenia. In this theory, disruption of NMDAR synaptic function leads to dys-regulated timing of action potentials in prefrontal networks, accelerating synaptic disconnection through a spike-timing-dependent mechanism
    corecore