1,128 research outputs found

    X-ray Evidence for Multiple Absorbing Structures in Seyfert Galaxies

    Full text link
    We have used X-ray spectra to measure attenuating columns in a large sample of Seyfert galaxies. Over 30 of these sources have resolved radio jets, allowing the relative orientation of the nucleus and host galaxy to be constrained. We have discovered that the distribution of absorbing columns is strongly correlated with the relative orientation of the Seyfert structures. This result is inconsistent with unification models including only a torus and is instead most readily explained if a second absorber is included: in addition to a Compton-thick, parsec-scale torus there would also be a larger-scale absorber with N_H < 10^{23} cm^{-2}. The second absorber is aligned with the host galactic plane while the torus is arbitrarily misaligned.Comment: 2 pages, 1 figure, to appear in "Multiwavelength AGN Surveys" (Cozumel, December 8-12 2003), ed. R. Maiolino and R. Mujica, Singapore: World Scientific, 2004. Additional material may be found at http://space.mit.edu/home/jonathan/research.htm

    Coupling of pinned magnetic moments in an antiferromagnet to a ferromagnet and its role for exchange bias

    Get PDF
    The interaction between uncompensated pinned magnetic moments within an antiferromagnetic (AFM) layer and an adjacent ferromagnetic (FM) layer responsible for the existence of exchange bias is explored in epitaxially grown trilayers of the form FM2/AFM/FM1 on Cu3Au(0 0 1) where FM1 is ~12 atomic monolayers (ML) Ni, FM2 is 21–25 ML Ni, and AFM is 27 ML or 50 ML Ni~25Mn~75. Field cooling for parallel or antiparallel alignment of the out-of-plane magnetizations of the two FM layers does not make a difference for the temperature-dependent coercivity (H C), magnitude of exchange bias field (H eb), AFM ordering temperature (T AFM), and blocking temperature for exchange bias (T b). We explain this by a model in which the uncompensated pinned magnetic moments distributed within the volume of the AFM layer interact with both of the FM layers, albeit with different strength. Parallel and antiparallel coupling between the magnetization of the pinned moments and the FM layers equally exists. This leads to the experimentally observed independence of H C, H eb, as well as of T AFM and T b on the magnetization direction of the FM layers during field cooling. These results provide new and detailed insight into revealing the subtle and complex nature of the exchange bias effect

    Simulation Analysis of Medium Access Techniques

    Full text link
    This paper presents comparison of Access Techniques used in Medium Access Control (MAC) protocol for Wireless Body Area Networks (WBANs). Comparison is performed between Time Division Multiple Access (TDMA), Frequency Division Multiple Access (FDMA), Carrier Sense Multiple Access with Collision Avoidance (CSMA/CA), Pure ALOHA and Slotted ALOHA (S-ALOHA). Performance metrics used for comparison are throughput (T), delay (D) and offered load (G). The main goal for comparison is to show which technique gives highest Throughput and lowest Delay with increase in Load. Energy efficiency is major issue in WBAN that is why there is need to know which technique performs best for energy conservation and also gives minimum delay.Comment: NGWMN with 7th IEEE International Conference on Broadband and Wireless Computing, Com- munication and Applications (BWCCA 2012), Victoria, Canada, 201

    Analyzing Delay in Wireless Multi-hop Heterogeneous Body Area Networks

    Full text link
    With increase in ageing population, health care market keeps growing. There is a need for monitoring of health issues. Wireless Body Area Network (WBAN) consists of wireless sensors attached on or inside human body for monitoring vital health related problems e.g, Electro Cardiogram (ECG), Electro Encephalogram (EEG), ElectronyStagmography (ENG) etc. Due to life threatening situations, timely sending of data is essential. For data to reach health care center, there must be a proper way of sending data through reliable connection and with minimum delay. In this paper transmission delay of different paths, through which data is sent from sensor to health care center over heterogeneous multi-hop wireless channel is analyzed. Data of medical related diseases is sent through three different paths. In all three paths, data from sensors first reaches ZigBee, which is the common link in all three paths. Wireless Local Area Network (WLAN), Worldwide Interoperability for Microwave Access (WiMAX), Universal Mobile Telecommunication System (UMTS) are connected with ZigBee. Each network (WLAN, WiMAX, UMTS) is setup according to environmental conditions, suitability of device and availability of structure for that device. Data from these networks is sent to IP-Cloud, which is further connected to health care center. Delay of data reaching each device is calculated and represented graphically. Main aim of this paper is to calculate delay of each link in each path over multi-hop wireless channel.Comment: arXiv admin note: substantial text overlap with arXiv:1208.240

    Transmission Delay of Multi-hop Heterogeneous Networks for Medical Applications

    Full text link
    Nowadays, with increase in ageing population, Health care market keeps growing. There is a need for monitoring of Health issues. Body Area Network consists of wireless sensors attached on or inside human body for monitoring vital Health related problems e.g, Electro Cardiogram (ECG), ElectroEncephalogram (EEG), ElectronyStagmography(ENG) etc. Data is recorded by sensors and is sent towards Health care center. Due to life threatening situations, timely sending of data is essential. For data to reach Health care center, there must be a proper way of sending data through reliable connection and with minimum delay. In this paper transmission delay of different paths, through which data is sent from sensor to Health care center over heterogeneous multi-hop wireless channel is analyzed. Data of medical related diseases is sent through three different paths. In all three paths, data from sensors first reaches ZigBee, which is the common link in all three paths. After ZigBee there are three available networks, through which data is sent. Wireless Local Area Network (WLAN), Worldwide Interoperability for Microwave Access (WiMAX), Universal Mobile Telecommunication System (UMTS) are connected with ZigBee. Each network (WLAN, WiMAX, UMTS) is setup according to environmental conditions, suitability of device and availability of structure for that device. Data from these networks is sent to IP-Cloud, which is further connected to Health care center. Main aim of this paper is to calculate delay of each link in each path over multihop wireless channel.Comment: BioSPAN with 7th IEEE International Conference on Broadband and Wireless Computing, Communication and Applications (BWCCA 2012), Victoria, Canada, 201

    Low-loss wavelength-multiplexed optical scanners using volume Bragg gratings for transmit-receive lasercom systems

    Get PDF
    Low-loss no moving parts free-space wavelength-multiplexed optical scanner (W-MOS) modules for transmit-receive lasercom systems are proposed and experimentally demonstrated. The proposed scanners are realized using volume Bragg gratings stored in dichromated gelatin (DCG) coupled with high-speed wavelength selection such as by a fast tunable laser. The potential speed of these scanners is in the Gigahertz range using present-day state-of-the-art nanosecond tuning speed lasers. A 940-lines/mm volume Bragg grating stored in dichromated gelatin is used to demonstrate the scanners. Angular dispersion and diffraction efficiency of the volume Bragg grating used for demonstration are studied versus wavelength and angle of incidence to determine the free-space W-MOS angular scan and insertion loss, respectively. Experimental results show that a tunable bandwidth of 80 nm, centered at 1560 nm, delivers an angular scan of 6.25 deg. The study also indicates that an in-line scanner design realized using two similar Bragg gratings in DCG delivers 13.42 deg angular scan, which is more than double the angular scan available from the free-space W-MOS using single volume Bragg grating

    The XMM-Newton Iron Line Profile of NGC 3783

    Full text link
    We report on observations of the iron K line in the nearby Seyfert 1 galaxy, NGC 3783, obtained in a long, 2 orbit (240 ks) XMM-Newton observation. The line profile obtained exhibits two strong narrow peaks at 6.4 keV and at 7.0 keV, with measured line equivalent widths of 120 and 35 eV respectively. The 6.4 keV emission is the K-alpha line from near neutral Fe, whilst the 7.0 keV feature probably originates from a blend of the neutral Fe K-beta line and the H-like line of Fe at 6.97 keV. The relatively narrow velocity width of the K-alpha line (<5000 km/s), its lack of response to the continuum emission on short timescales and the detection of a neutral Compton reflection component are all consistent with a distant origin in Compton-thick matter such as the putative molecular torus. A strong absorption line from highly ionized iron (at 6.67 keV) is detected in the time-averaged iron line profile, whilst the depth of the feature appears to vary with time, being strongest when the continuum flux is higher. The iron absorption line probably arises from the highest ionization component of the known warm absorber in NGC 3783, with an ionization of logxi=3 and column density of 5x10^{22}cm{-2} and may originate from within 0.1pc of the nucleus. A weak red-wing to the iron K line profile is also detected below 6.4 keV. However when the effect of the highly ionized warm absorber on the underlying continuum is taken into account, the requirement for a relativistic iron line component from the inner disk is reduced.Comment: 34 pages, including 11 figures. Accepted for publication in Ap
    • …
    corecore