155 research outputs found

    Conditional phase shift from a quantum dot in a pillar microcavity

    Full text link
    Large conditional phase shifts from coupled atom-cavity systems are a key requirement for building a spin photon interface. This in turn would allow the realisation of hybrid quantum information schemes using spin and photonic qubits. Here we perform high resolution reflection spectroscopy of a quantum dot resonantly coupled to a pillar microcavity. We show both the change in reflectivity as the quantum dot is tuned through the cavity resonance, and measure the conditional phase shift induced by the quantum dot using an ultra stable interferometer. These techniques could be extended to the study of charged quantum dots, where it would be possible to realise a spin photon interface

    Nonlinear photoluminescence spectra from a quantum dot-cavity system: Direct evidence of pump-induced stimulated emission and anharmonic cavity-QED

    Full text link
    We investigate the power-dependent photoluminescence spectra from a strongly coupled quantum dot-cavity system using a quantum master equation technique that accounts for incoherent pumping, pure dephasing, and fermion or boson statistics. Analytical spectra at the one-photon correlation level and the numerically exact multi-photon spectra for fermions are presented. We compare to recent experiments on a quantum dot-micropiller cavity system and show that an excellent fit to the data can be obtained by varying only the incoherent pump rates in direct correspondence with the experiments. Our theory and experiments together show a clear and systematic way of studying stimulated-emission induced broadening and anharmonic cavity-QED.Comment: We have reworked our previous arXiv paper and submitted this latest version for peer revie

    Linewidth broadening and emission saturation of a resonantly excited quantum dot monitored via an off-resonant cavity mode

    Get PDF
    We report on the robustness of a detuned mode channel for reading out the relevant s-shell properties of a resonantly excited coupled quantum dot (QD) in a pillar microcavity. The line broadening of the QD s-shell is "monitored" by the mode signal with high conformity to the directly measured QD linewidth. The mode signal also monitors the saturation behavior of a near Fourier transform-limited photon emission from a resonantly excited QD. We also investigate the temperature dependence of the coupling mechanism between an off-resonant QD and a cavity mode under pure resonant excitation of the quantum emitter.</p

    Half adder capabilities of a coupled quantum dot device

    Get PDF
    We gratefully acknowledge nancial support from the European Union (FPVII, 2007- 2013) under grant agreement no 256959 NANOPOWER and grant agreement no 318287 LANDAUER as well as from the state of Bavaria.In this paper we demonstrate two realizations of a half adder based on a voltage-rectifying mechanism involving two Coulomb-coupled quantum dots. First, we examine the ranges of operation of the half adder's individual elements, the AND and XOR gates, for a single rectifying device. It allows a switching between the two gates by a control voltage and thus enables a clocked half adder operation. The logic gates are shown to be reliably operative in a broad noise amplitude range with negligible error probabilities. Subsequently, we study the implementation of the half adder in a combined double-device consisting of two individually tunable rectifiers. We show that this double device allows a simultaneous operation of both relevant gates at once. The presented devices draw their power solely from electronic fluctuations and are therefore an advancement in the field of energy efficient and autonomous electronics.PostprintPeer reviewe

    Nanothermometer based on resonant tunneling diodes : from cryogenic to room temperatures

    Get PDF
    The authors are grateful for financial support by the BMBF via national project EIPHRIK (FKZ: 13N10710), the European Union (FPVII (2007-2013) under grant agreement No. 256959 NANOPOWER and No. 318287 LANDAUER), and the Brazilian Agencies FAPESP (2013/24253-5, 2012/13052-6, and 2012/51415-3), CNPq and CAPES.Sensor miniaturization together with broadening temperature sensing range are fundamental challenges in nanothermometry. By exploiting a large temperature-dependent screening effect observed in a resonant tunneling diode in sequence with a GaInNAs/GaAs quantum well, we present a low dimensional, wide range, and high sensitive nanothermometer. This sensor shows a large threshold voltage shift of the bistable switching of more than 4.5 V for a temperature raise from 4.5 to 295 K, with a linear voltage-temperature response of 19.2 mV K-1, and a temperature uncertainty in the millikelvin (mK) range. Also, when we monitor the electroluminescence emission spectrum, an optical read-out control of the thermometer is provided. The combination of electrical and optical read-outs together with the sensor architecture excel the device as a thermometer with the capability of noninvasive temperature sensing, high local resolution, and sensitivity.PostprintPeer reviewe

    Viral-mediated oncolysis is the most critical factor in the late-phase of the tumor regression process upon vaccinia virus infection

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In principle, the elimination of malignancies by oncolytic virotherapy could proceed by different mechanisms - e.g. tumor cell specific oncolysis, destruction of the tumor vasculature or an anti-tumoral immunological response. In this study, we analyzed the contribution of these factors to elucidate the responsible mechanism for regression of human breast tumor xenografts upon colonization with an attenuated vaccinia virus (VACV).</p> <p>Methods</p> <p>Breast tumor xenografts were analyzed 6 weeks post VACV infection (p.i.; regression phase) by immunohistochemistry and mouse-specific expression arrays. Viral-mediated oncolysis was determined by tumor growth analysis combined with microscopic studies of intratumoral virus distribution. The tumor vasculature was morphologically characterized by diameter and density measurements and vessel functionality was analyzed by lectin perfusion and extravasation studies. Immunological aspects of viral-mediated tumor regression were studied in either immune-deficient mouse strains (T-, B-, NK-cell-deficient) or upon cyclophosphamide-induced immunosuppression (MHCII<sup>+</sup>-cell depletion) in nude mice.</p> <p>Results</p> <p>Late stage VACV-infected breast tumors showed extensive necrosis, which was highly specific to cancer cells. The tumor vasculature in infected tumor areas remained functional and the endothelial cells were not infected. However, viral colonization triggers hyperpermeability and dilatation of the tumor vessels, which resembled the activated endothelium in wounded tissue. Moreover, we demonstrated an increased expression of genes involved in leukocyte-endothelial cell interaction in VACV-infected tumors, which orchestrate perivascular inflammatory cell infiltration. The immunohistochemical analysis of infected tumors displayed intense infiltration of MHCII-positive cells and colocalization of tumor vessels with MHCII<sup>+</sup>/CD31<sup>+ </sup>vascular leukocytes. However, GI-101A tumor growth analysis upon VACV-infection in either immunosuppressed nude mice (MHCII<sup>+</sup>-cell depleted) or in immune-deficient mouse strains (T-, B-, NK-cell-deficient) revealed that neither MHCII-positive immune cells nor T-, B-, or NK cells contributed significantly to VACV-mediated tumor regression. In contrast, tumors of immunosuppressed mice showed enhanced viral spreading and tumor necrosis.</p> <p>Conclusions</p> <p>Taken together, these results indicate that VACV-mediated oncolysis is the primary mechanism of tumor shrinkage in the late regression phase. Neither the destruction of the tumor vasculature nor the massive VACV-mediated intratumoral inflammation was a prerequisite for tumor regression. We propose that approaches to enhance viral replication and spread within the tumor microenvironment should improve therapeutical outcome.</p

    Temperature tuning from direct to inverted bistable electroluminescence in resonant tunneling diodes

    Get PDF
    The authors are grateful for financial support by the BMBF via national project EIPHRIK (FKZ: 13N10710), the European Union (FPVII (2007-2013) under grant agreement no. 318287 LANDAUER), and the Brazilian Agencies CNPq and CAPES. S. H. gratefully acknowledges support by the Royal Society and the Wolfson Foundation.We study the electroluminescence (EL) emission of purely n-doped resonant tunneling diodes in a wide temperature range. The paper demonstrates that the EL originates from impact ionization and radiative recombination in the extended collector region of the tunneling device. Bistable current-voltage response and EL are detected and their respective high and low states are tuned under varying temperature. The inversion bistability of the EL intensity can be switched from direct to inverted with respect to the tunneling current and the optical on/off ratio can be enhanced with increasing temperature. One order of magnitude amplification of the optical on/off ratio can be attained compared to the electrical one. Our observation can be explained by an interplay of moderate peak-to-valley current ratios, large resonance voltages, and electron energy loss mechanisms and thus could be applied as an alternative route towards optoelectronic applications of tunneling devices.PostprintPeer reviewe
    • …
    corecore