333 research outputs found

    Cassini Plasma Spectrometer observations of Titan's ionospheric electrons and ions

    Get PDF
    The work in this thesis uses data from the Cassini spacecraft in the Saturnian system to study the ionosphere and magnetic environment of Saturn’s largest moon Titan. The main instrument utilised is the Cassini Plasma Spectrometer – Electron Spectrometer (CAPS-ELS). Following the presentation of relevant background information, the first part of the thesis is concerned with the analysis of electrons in Titan’s ionosphere and exosphere, whereas in the second part we investigate observations of organic negative ions that can reach masses as high as 13,800 amu/q. The first of two electron topics is the study of photoelectrons in Titan’s ionosphere. We report on observations of photoelectrons (Coates et al., 2007a) in Titan’s exosphere and ionospheric tail that were created in Titan’s lower sunlit ionosphere. We compare observations to hybrid model results (Sillanpää et al., 2011) to confirm that photoelectrons can travel to these locations via magnetic field lines and discuss the implications for Titan’s ionospheric environment and magnetic tail. In the second electron topic we explore regions in Titan’s topside ionosphere where electrons undergo a change in energy of up to 100 eV. These events are observed predominantly on the hemisphere of Titan where the electric field of Saturn’s corotating magnetospheric plasma points away from the moon. A number of events also appear to be associated with pick up ions. The negative ion part of this thesis describes the investigation of factors that control the masses and number densities of negative ions (Coates et al., 2007b, 2009). These have been observed in the altitude range 950 – 1400 km which makes up the main part of Titan’s ionosphere. We find that the highest masses and densities are observed at the lower altitudes within this range. In addition, we reveal solar zenith angle trends for different mass groups, including a region of predominantly low densities near the day-night terminator

    Discrete classification and electron energy spectra of Titan's varied magnetospheric environment

    Get PDF
    We analyse combined electron spectra across the dynamic range of both Cassini electron sensors in order to characterise the background plasma environment near Titan for 54 Cassini-Titan encounters as of May 2009. We characterise the encounters into four broad types: Plasma sheet, Lobe-like, Magnetosheath and Bimodal. Despite many encounters occurring close to the magnetopause only two encounters to date were predominantly in the magnetosheath (T32 and T42). Bimodal encounters contain two distinct electron populations, the low energy component of the bi-modal populations is apparently associated with local water group products. Additionally, a hot lobe-like environment is also occasionally observed and is suggestively linked to increased local pick-up. We find that 34 of 54 encounters analysed are associated with one of these groups while the remaining encounters exhibit a combination of these environments. We provide typical electron properties and spectra for each plasma regime and list the encounters appropriate to each. Citation: Rymer, A.M., H. T. Smith, A. Wellbrock, A.J. Coates, and D.T. Young (2009), Discrete classification and electron energy spectra of Titan's varied magnetospheric environment, Geophys. Res. Lett., 36, L15109, doi: 10.1029/2009GL039427

    Special issue editorial - Plasma interactions with Solar System Objects: Anticipating Rosetta, Maven and Mars Orbiter Mission

    Get PDF
    Within our solar system, the planets, moons, comets and asteroids all have plasma interactions. The interaction depends on the nature of the object, particularly the presence of an atmosphere and a magnetic field. Even the size of the object matters through the finite gyroradius effect and the scale height of cold ions of exospheric origin. It also depends on the upstream conditions, including position within the solar wind or the presence within a planetary magnetosphere. Soon after ESA׳s Rosetta reached comet Churyumov–Gerasimenko, NASA׳s Maven and ISRO׳s Mars Orbiter Mission (MOM) reached Mars, and ESA׳s Venus Express mission was completed, this issue explores our understanding of plasma interactions with comets, Mars, Venus, and moons in the solar system. We explore the processes which characterise the interactions, such as ion pickup and field draping, and their effects such as plasma escape. Papers are based on data from current and recent space missions, modelling and theory, as we explore our local part of the ׳plasma universe׳

    Detection of negative pickup ions at Saturn's moon Dione

    Get PDF
    We investigate a possible negative ion feature observed by the Cassini Plasma Spectrometer (CAPS) during a flyby of Saturn's moon Dione that occurred on April 7, 2010. By examining possible particle trajectories, we find that the observed particles are consistent with negative pick‐up ions originating near the moon's surface. We find that the mass of the negative pick‐up ions is in the range of 15 – 25 u and tentatively identify this species as O‐, likely resulting from ionization and subsequent pick‐up from Dione's O2‐CO2 exosphere. Our estimates show that the negative ion density is ~3 x 10‐3 cm‐3. This is comparable to, but slightly smaller than, that previously reported for the density of O2+ pick‐up ions for the same flyby, indicating that negative pick‐up ions may represent a major loss channel for Dione's exosphere

    Negative ion chemistry in Titan's upper atmosphere

    No full text
    International audienceThe Electron Spectrometer (ELS), one of the sensors making up the Cassini Plasma Spectrometer (CAPS) revealed the existence of numerous negative ions in Titan's upper atmosphere. The observations at closest approach (not, vert, similar1000 km) show evidence for negatively charged ions up to not, vert, similar10,000 amu/q, as well as two distinct peaks at 22±4 and 44±8 amu/q, and maybe a third one at 82±14 amu/q. We present the first ionospheric model of Titan including negative ion chemistry. We find that dissociative electron attachment to neutral molecules (mostly HCN) initiates the formation of negative ions. The negative charge is then transferred to more acidic molecules such as HC3N, HC5N or C4H2. Loss occurs through associative detachment with radicals (H and CH3). We attribute the three low mass peaks observed by ELS to CN−, C3N−/C4H− and C5N−. These species are the first intermediates in the formation of the even larger negative ions observed by ELS, which are most likely the precursors to the aerosols observed at lower altitudes

    Gene expression analysis after receptor tyrosine kinase activation reveals new potential melanoma proteins

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Melanoma is an aggressive tumor with increasing incidence. To develop accurate prognostic markers and targeted therapies, changes leading to malignant transformation of melanocytes need to be understood. In the <it>Xiphophorus </it>melanoma model system, a mutated version of the EGF receptor Xmrk (<it>Xiphophorus </it>melanoma receptor kinase) triggers melanomagenesis. Cellular events downstream of Xmrk, such as the activation of Akt, Ras, B-Raf or Stat5, were also shown to play a role in human melanomagenesis. This makes the elucidation of Xmrk downstream targets a useful method for identifying processes involved in melanoma formation.</p> <p>Methods</p> <p>Here, we analyzed Xmrk-induced gene expression using a microarray approach. Several highly expressed genes were confirmed by realtime PCR, and pathways responsible for their induction were revealed using small molecule inhibitors. The expression of these genes was also monitored in human melanoma cell lines, and the target gene <it>FOSL1 </it>was knocked down by siRNA. Proliferation and migration of siRNA-treated melanoma cell lines were then investigated.</p> <p>Results</p> <p>Genes with the strongest upregulation after receptor activation were FOS-like antigen 1 (<it>Fosl1</it>), early growth response 1 (<it>Egr1</it>), osteopontin (<it>Opn</it>), insulin-like growth factor binding protein 3 (<it>Igfbp3</it>), dual-specificity phosphatase 4 (<it>Dusp4</it>), and tumor-associated antigen L6 (<it>Taal6</it>). Interestingly, most genes were blocked in presence of a SRC kinase inhibitor. Importantly, we found that <it>FOSL1</it>, <it>OPN</it>, <it>IGFBP3</it>, <it>DUSP4</it>, and <it>TAAL6 </it>also exhibited increased expression levels in human melanoma cell lines compared to human melanocytes. Knockdown of <it>FOSL1 </it>in human melanoma cell lines reduced their proliferation and migration.</p> <p>Conclusion</p> <p>Altogether, the data show that the receptor tyrosine kinase Xmrk is a useful tool in the identification of target genes that are commonly expressed in Xmrk-transgenic melanocytes and melanoma cell lines. The identified molecules constitute new possible molecular players in melanoma development. Specifically, a role of FOSL1 in melanomagenic processes is demonstrated. These data are the basis for future detailed analyses of the investigated target genes.</p

    A new upper limit to the field-aligned potential near Titan

    Get PDF
    Neutral particles dominate regions of the Saturn magnetosphere and locations near several of Saturn's moons. Sunlight ionizes neutrals, producing photoelectrons with characteristic energy spectra. The Cassini plasma spectrometer electron spectrometer has detected photoelectrons throughout these regions, where photoelectrons may be used as tracers of magnetic field morphology. They also enhance plasma escape by setting up an ambipolar electric field, since the relatively energetic electrons move easily along the magnetic field. A similar mechanism is seen in the Earth's polar wind and at Mars and Venus. Here we present a new analysis of Titan photoelectron data, comparing spectra measured in the sunlit ionosphere at ~1.4 Titan radii (RT) and at up to 6.8 RT away. This results in an upper limit on the potential of 2.95 V along magnetic field lines associated with Titan at up to 6.8 RT, which is comparable to some similar estimates for photoelectrons seen in Earth's magnetosphere

    Quantum key distribution and 1 Gbit/s data encryption over a single fibre

    Full text link
    We perform quantum key distribution (QKD) in the presence of 4 classical channels in a C-band dense wavelength division multiplexing (DWDM) configuration using a commercial QKD system. The classical channels are used for key distillation and 1 Gbps encrypted communication, rendering the entire system independent from any other communication channel than a single dedicated fibre. We successfully distil secret keys over fibre spans of up to 50 km. The separation between quantum channel and nearest classical channel is only 200 GHz, while the classical channels are all separated by 100 GHz. In addition to that we discuss possible improvements and alternative configurations, for instance whether it is advantageous to choose the quantum channel at 1310 nm or to opt for a pure C-band configuration.Comment: 9 pages, 7 figure

    Plasma environment at Titan's orbit with Titan present and absent

    Get PDF
    To understand the possible large scale influence of Titan on its plasma environment, we study the magnetic fields and plasma measurements, both when Cassini flies close to Titan and when Cassini crosses the moon's orbit far from it. Using 98 Cassini passes from 06/2004 to 12/2008, we examine the plasma environments at the orbit of Titan with the moon present and absent. In particular, the presence of Titan appears to affect the magnetopause location. Near noon, the Saturn magnetopause is more frequently inside of Titan's orbit with the moon absent than with it present. Titan's presence near noon appears to locally enhance the total pressure and reduce the magnetosphere compressibility, possibly by mass-loading. Near local midnight, the stretching and sweepback angles for cases with Titan present and absent suggest that the moon enhances the tail reconnection rate, in agreement with previous studies of the moon's influence on the Saturnian magnetosphere
    corecore