830 research outputs found
Theory of real space imaging of Fermi surfaces
A scanning tunneling microscope can be used to visualize in real space Fermi
surfaces with buried impurities far below substrates acting as local probes. A
theory describing this feature is developed based on the stationary phase
approximation. It is demonstrated how a Fermi surface of a material acts as a
mirror focusing electrons that scatter at hidden impurities.Comment: 10 pages, 4 figure
Mapping Itinerant Electrons around Kondo Impurities
We investigate single Fe and Co atoms buried below a Cu(100) surface using
low temperature scanning tunneling spectroscopy. By mapping the local density
of states of the itinerant electrons at the surface, the Kondo resonance near
the Fermi energy is analyzed. Probing bulk impurities in this well-defined
scattering geometry allows separating the physics of the Kondo system and the
measuring process. The line shape of the Kondo signature shows an oscillatory
behavior as a function of depth of the impurity as well as a function of
lateral distance. The oscillation period along the different directions reveals
that the spectral function of the itinerant electrons is anisotropic.Comment: 5 pages, 4 figures, accepted by Physical Review Letter
Recommended from our members
On designing dependable services with diverse off-the-shelf SQL servers
Come back Marshall, all is forgiven? : Complexity, evolution, mathematics and Marshallian exceptionalism
Marshall was the great synthesiser of neoclassical economics. Yet with his qualified assumption of self-interest, his emphasis on variation in economic evolution and his cautious attitude to the use of mathematics, Marshall differs fundamentally from other leading neoclassical contemporaries. Metaphors inspire more specific analogies and ontological assumptions, and Marshall used the guiding metaphor of Spencerian evolution. But unfortunately, the further development of a Marshallian evolutionary approach was undermined in part by theoretical problems within Spencer's theory. Yet some things can be salvaged from the Marshallian evolutionary vision. They may even be placed in a more viable Darwinian framework.Peer reviewedFinal Accepted Versio
Long-range Kondo signature of a single magnetic impurity
The Kondo effect, one of the oldest correlation phenomena known in condensed
matter physics, has regained attention due to scanning tunneling spectroscopy
(STS) experiments performed on single magnetic impurities. Despite the
sub-nanometer resolution capability of local probe techniques one of the
fundamental aspects of Kondo physics, its spatial extension, is still subject
to discussion. Up to now all STS studies on single adsorbed atoms have shown
that observable Kondo features rapidly vanish with increasing distance from the
impurity. Here we report on a hitherto unobserved long range Kondo signature
for single magnetic atoms of Fe and Co buried under a Cu(100) surface. We
present a theoretical interpretation of the measured signatures using a
combined approach of band structure and many-body numerical renormalization
group (NRG) calculations. These are in excellent agreement with the rich
spatially and spectroscopically resolved experimental data.Comment: 7 pages, 3 figures + 8 pages supplementary material; Nature Physics
(Jan 2011 - advanced online publication
Cell proliferation and differentiation kinetics during spermatogenesis in Hydra carnea
Spermatogenesis inHydra carnea was investigated. The cell proliferation and differentiation kinetics of intermediates in the spermatogenesis pathway were determined, using quantitative determinations of cell abundance, pulse and continuous labelling with3H-thymidine and nuclear DNA measurements. Testes develop in the ectoderm of male hydra as a result of interstitial cell proliferation. Gonial stem cells and proliferating spermatogonia have cell cycles of 28 h and 22 h, respectively. Stem cells undergo four, five or six cell divisions prior to meiosis which includes a premeiotic S+G2 phase of 20 h followed by a long meiotic prophase (22 h).
Spermatid differentiation requires 12–29 h. When they first appear, testes contain only proliferating spermatogonia; meiotic and postmeiotic cells appear after 2 and 3 days, respectively and release of mature sperm begins after 4 days. Mature testes produce about 27,000 sperm per day over a period of 4–6 days: about 220 gonial stem cells per testis are required to support this level of sperm differentiation. Further results indicate that somatic (e.g. nematocyte) differentiation does not occur in testes although it continues normally in ectodermal tissue outside testes. Our results support the hypothesis that spermatogenesis is controlled locally in regions of the ectoderm where testes develop
Panoramic optical and near-infrared SETI instrument: prototype design and testing
The Pulsed All-sky Near-infrared Optical Search for ExtraTerrestrial
Intelligence (PANOSETI) is an instrument program that aims to search for fast
transient signals (nano-second to seconds) of artificial or astrophysical
origin. The PANOSETI instrument objective is to sample the entire observable
sky during all observable time at optical and near-infrared wavelengths over
300 - 1650 nm. The PANOSETI instrument is designed with a number of modular
telescope units using Fresnel lenses (0.5m) arranged on two geodesic
domes in order to maximize sky coverage. We present the prototype design
and tests of these modular Fresnel telescope units. This consists of the design
of mechanical components such as the lens mounting and module frame. One of the
most important goals of the modules is to maintain the characteristics of the
Fresnel lens under a variety of operating conditions. We discuss how we account
for a range of operating temperatures, humidity, and module orientations in our
design in order to minimize undesirable changes to our focal length or angular
resolution.Comment: 12 pages, 8 figures, 1 tabl
Cytogerontology since 1881: A reappraisal of August Weismann and a review of modern progress
Cytogerontology, the science of cellular ageing, originated in 1881 with the prediction by August Weismann that the somatic cells of higher animals have limited division potential. Weismann's prediction was derived by considering the role of natural selection in regulating the duration of an organism's life. For various reasons, Weismann's ideas on ageing fell into neglect following his death in 1914, and cytogerontology has only reappeared as a major research area following the demonstration by Hayflick and Moorhead in the early 1960s that diploid human fibroblasts are restricted to a finite number of divisions in vitro.
In this review we give a detailed account of Weismann's theory, and we reveal that his ideas were both more extensive in their scope and more pertinent to current research than is generally recognised. We also appraise the progress which has been made over the past hundred years in investigating the causes of ageing, with particular emphasis being given to (i) the evolution of ageing, and (ii) ageing at the cellular level. We critically assess the current state of knowledge in these areas and recommend a series of points as primary targets for future research
Change and Aging Senescence as an adaptation
Understanding why we age is a long-lived open problem in evolutionary
biology. Aging is prejudicial to the individual and evolutionary forces should
prevent it, but many species show signs of senescence as individuals age. Here,
I will propose a model for aging based on assumptions that are compatible with
evolutionary theory: i) competition is between individuals; ii) there is some
degree of locality, so quite often competition will between parents and their
progeny; iii) optimal conditions are not stationary, mutation helps each
species to keep competitive. When conditions change, a senescent species can
drive immortal competitors to extinction. This counter-intuitive result arises
from the pruning caused by the death of elder individuals. When there is change
and mutation, each generation is slightly better adapted to the new conditions,
but some older individuals survive by random chance. Senescence can eliminate
those from the genetic pool. Even though individual selection forces always win
over group selection ones, it is not exactly the individual that is selected,
but its lineage. While senescence damages the individuals and has an
evolutionary cost, it has a benefit of its own. It allows each lineage to adapt
faster to changing conditions. We age because the world changes.Comment: 19 pages, 4 figure
Predicting outcome of internet-based treatment for depressive symptoms.
In this study we explored predictors and moderators of response to Internet-based cognitive behavioral therapy (CBT) and Internet-based problem-solving therapy (PST) for depressive symptoms. The sample consisted of 263 participants with moderate to severe depressive symptoms. Of those, 88 were randomized to CBT, 88 to PST and 87 to a waiting list control condition. Outcomes were improvement and clinically significant change in depressive symptoms after 8 weeks. Higher baseline depression and higher education predicted improvement, while higher education, less avoidance behavior and decreased rational problem-solving skills predicted clinically significant change across all groups. No variables were found that differentially predicted outcome between Internet-based CBT and Internet-based PST. More research is needed with sufficient power to investigate predictors and moderators of response to reveal for whom Internet-based therapy is best suited. © 2013 Copyright Society for Psychotherapy Research
- …
