734 research outputs found

    Single cell mechanics: stress stiffening and kinematic hardening

    Full text link
    Cell mechanical properties are fundamental to the organism but remain poorly understood. We report a comprehensive phenomenological framework for the nonlinear rheology of single fibroblast cells: a superposition of elastic stiffening and viscoplastic kinematic hardening. Our results show, that in spite of cell complexity its mechanical properties can be cast into simple, well-defined rules, which provide mechanical cell strength and robustness via control of crosslink slippage.Comment: 4 pages, 6 figure

    Analysis of Diffusion of Ras2 in Saccharomyces cerevisiae Using Fluorescence Recovery after Photobleaching

    Full text link
    Binding, lateral diffusion and exchange are fundamental dynamic processes involved in protein association with cellular membranes. In this study, we developed numerical simulations of lateral diffusion and exchange of fluorophores in membranes with arbitrary bleach geometry and exchange of the membrane localized fluorophore with the cytosol during Fluorescence Recovery after Photobleaching (FRAP) experiments. The model simulations were used to design FRAP experiments with varying bleach region sizes on plasma-membrane localized wild type GFP-Ras2 with a dual lipid anchor and mutant GFP-Ras2C318S with a single lipid anchor in live yeast cells to investigate diffusional mobility and the presence of any exchange processes operating in the time scale of our experiments. Model parameters estimated using data from FRAP experiments with a 1 micron x 1 micron bleach region-of-interest (ROI) and a 0.5 micron x 0.5 micron bleach ROI showed that GFP-Ras2, single or dual lipid modified, diffuses as single species with no evidence of exchange with a cytoplasmic pool. This is the first report of Ras2 mobility in yeast plasma membrane. The methods developed in this study are generally applicable for studying diffusion and exchange of membrane associated fluorophores using FRAP on commercial confocal laser scanning microscopes.Comment: Accepted for publication in Physical Biology (2010). 28 pages, 7 figures, 3 table

    Improving Soil Productivity and Increasing Lowland Rice Yields through the Integration of Organic and Inorganic Fertilizers in the Savannah and Forest Agro-ecological Zones of La Cote d’Ívoire

    Get PDF
    Sole mineral fertilizers use by poorly resourced farmers for rice production in the lowlands is usually low and unsustainable. Field experiments were therefore conducted within two contrasting environments (Forest and Savannah), using two common organic amendments (Poultry manure and Cattle manure) to establish an effective and integrated soil nutrient management system for improved lowland soil productivity and increased rice yields. The study was also partly intended to encourage and promote the effective and sustainable use of locally available organic amendments for nutrient management in lowland rice production. Results showed that organic amendments {cattle manure (CM) and poultry manure (PM)} contributed significantly to grain yield increases and total productivity with PM having a significantly greater and positive effect on grain yield than CM. In addition, the application of organic amendments in combination with mineral fertilizer significantly contributed to increased grain yield over the application of sole mineral fertilizer. Within the savannah agro- cological zone, there was a 130% (CM) and 203% (PM) grain yield increase over the control due to the application of organic amendments . When organic amendments were applied in combination with mineral fertilizer (MF), grain yield increased by 21% and 43% over sole MF for CM and PM respectively. However, sole CM contributed 12% increase in grain yield over the control while PM gave a 35% increase within the forest agro- cological zone. The combined application of MF and CM resulted in an 11% increase in grain yield while MF and PM combinations produced a 30% yield increase within the ecology. The non-addition of N, P, K as mineral fertilizer resulted in a yield reduction of about 84% at both sites. Resource poor farmers within the West African sub-region should therefore be encouraged to use organic amendments, which are not only available locally but also affordable. Proper storage and handling of these organic materials is very important to minimize nutrient losses.&nbsp

    Using Selected Structural Indices to Pinpoint the Field Moisture Capacity of Some Coarse-Textured Agricultural Soils in Southeastern Nigeria

    Full text link
    Over- or underestimation of field capacity (FC) of agricultural soils could misguide soil and water management and this might have negative agronomic and environmental impacts. The study sought to identify the moisture tension for reliably estimating in the laboratory the FC of some sandy soils with low-activity clay minerals and at different levels of structure development in Nsukka agroecological zone in southeastern Nigeria. Fifty-four samples of topand subsoils under contrasting vegetation cover at three locations in the zone were analyzed for texture, organicmatter contents, bulk density and total porosity. Saturated hydraulic conductivities (Ksat) of the samples were equallydetermined. Water-conducting and water-filled porosities at each of 0.06-, 0.10- and 0.33-bar tensions were implied from water retention data at the respective tensions. The soils were categorized based on their levels of structure development using a structural stability index [(organic matter: silt+clay) %] as follows: very low (< 4%), low (4-7.5%) and moderate to high (> 7.5%) stability soils. Series of simple correlation tests were run among the waterconducting porosities at the various tensions and the Ksat of the soils. In each case, the soil was assumed to have attained FC at that moisture tension which the associated water-conducting porosity showed significant positive correlation with the Ksat. Our results revealed that the 0.06-bar tension overestimated the FC of the soils. The 0.10-bar tension, the commonly used moisture tension for the purpose in the study area, proved suitable only for soils within the moderate to high structural stability category. From all indications, the 0.33-bar tension best corresponded to the FC of the less structurally developed soils in the other two categories. The level of soil structure development should therefore be considered before deciding the suitable moisture tension for the determination of FC of these and similar soils in other tropical locations

    PHYSICO-CHEMICAL AND GEOCHEMICAL PROPERTIES OF SOILS UNDER SAWAH SYSTEM OF INLAND VALLEYS IN NIGERIA

    Get PDF
    This study investigated the physico-chemical and geochemical properties of soils under sawah in Nigeria. It was found that soils under sawah were majorly sandy loam to sandy clay loam having acidic reactions, low exchangeable Ca, Mg, K and Na. These soils were deficient in available P, SiO2, S, Total Nitrogen and Total Carbon while SiO2, Al2O3 and Fe2O3 dominated total elemental composition, accounting for a cumulative average of 96.16%. Except total elemental TiO2 and K2O which showed average values >1%, MnO, MgO, CaO, Na2O and P2O5 showed average values <1%. Soils under sawah exhibited intermediated to extreme weathering degree with majority of the soil sampled falling into the category of extreme weathering. With extreme degree of weathering, rapid loss of mobile species such as basic cations from soil is imminent which may account for the results observed in this study. Thus, combination of conservative agricultural practices is recommended.   &nbsp
    • …
    corecore