13 research outputs found

    Evaluation of the Human IgG Antibody Response to Aedes albopictus Saliva as a New Specific Biomarker of Exposure to Vector Bites

    Get PDF
    Aedes-borne viruses like dengue and chikungunya are a major problem in Reunion Island. Assessing exposure to Aedes bites is crucial to estimating the risk of pathogen transmission. Currently, the exposure of populations to Aedes albopictus bites is mainly evaluated by entomological methods which are indirect and difficult to apply on a large scale. Recent findings suggest that evaluation of human antibody responses against arthropod salivary proteins could be useful in assessing exposure to mosquito bites. The results indicate that 88% of the studied population produce IgG to Ae. albopictus saliva antigens in Reunion Island and show that this biomarker can detect different levels of individual exposure. In addition, little cross-reactivity is observed with Aedes aegypti saliva, suggesting that this could be a specific marker for exposure to Aedes albopictus bites. Taken together, these results suggest that antibody responses to saliva could constitute a powerful immuno-epidemiological tool for evaluating exposure to Aedes albopictus and therefore the risk of arbovirus infection

    Humoral Response to the Anopheles gambiae Salivary Protein gSG6: A Serological Indicator of Exposure to Afrotropical Malaria Vectors

    Get PDF
    Salivary proteins injected by blood feeding arthropods into their hosts evoke a saliva-specific humoral response which can be useful to evaluate exposure to bites of disease vectors. However, saliva of hematophagous arthropods is a complex cocktail of bioactive factors and its use in immunoassays can be misleading because of potential cross-reactivity to other antigens. Toward the development of a serological marker of exposure to Afrotropical malaria vectors we expressed the Anopheles gambiae gSG6, a small anopheline-specific salivary protein, and we measured the anti-gSG6 IgG response in individuals from a malaria hyperendemic area of Burkina Faso, West Africa. The gSG6 protein was immunogenic and anti-gSG6 IgG levels and/or prevalence increased in exposed individuals during the malaria transmission/rainy season. Moreover, this response dropped during the intervening low transmission/dry season, suggesting it is sensitive enough to detect variation in vector density. Members of the Fulani ethnic group showed higher anti-gSG6 IgG response as compared to Mossi, a result consistent with the stronger immune reactivity reported in this group. Remarkably, anti-gSG6 IgG levels among responders were high in children and gradually declined with age. This unusual pattern, opposite to the one observed with Plasmodium antigens, is compatible with a progressive desensitization to mosquito saliva and may be linked to the continued exposure to bites of anopheline mosquitoes. Overall, the humoral anti-gSG6 IgG response appears a reliable serological indicator of exposure to bites of the main African malaria vectors (An. gambiae, Anopheles arabiensis and, possibly, Anopheles funestus) and it may be exploited for malaria epidemiological studies, development of risk maps and evaluation of anti-vector measures. In addition, the gSG6 protein may represent a powerful model system to get a deeper understanding of molecular and cellular mechanisms underlying the immune tolerance and progressive desensitization to insect salivary allergens

    IgG responses to the gSG6-P1 salivary peptide for evaluating human exposure to Anopheles bites in urban areas of Dakar region, Sénégal

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Urban malaria can be a serious public health problem in Africa. Human-landing catches of mosquitoes, a standard entomological method to assess human exposure to malaria vector bites, can lack sensitivity in areas where exposure is low. A simple and highly sensitive tool could be a complementary indicator for evaluating malaria exposure in such epidemiological contexts. The human antibody response to the specific <it>Anopheles </it>gSG6-P1 salivary peptide have been described as an adequate tool biomarker for a reliable assessment of human exposure level to <it>Anopheles </it>bites. The aim of this study was to use this biomarker to evaluate the human exposure to <it>Anopheles </it>mosquito bites in urban settings of Dakar (Senegal), one of the largest cities in West Africa, where <it>Anopheles </it>biting rates and malaria transmission are supposed to be low.</p> <p>Methods</p> <p>One cross-sectional study concerning 1,010 (505 households) children (n = 505) and adults (n = 505) living in 16 districts of downtown Dakar and its suburbs was performed from October to December 2008. The IgG responses to gSG6-P1 peptide have been assessed and compared to entomological data obtained in or near the same district.</p> <p>Results</p> <p>Considerable individual variations in anti-gSG6-P1 IgG levels were observed between and within districts. In spite of this individual heterogeneity, the median level of specific IgG and the percentage of immune responders differed significantly between districts. A positive and significant association was observed between the exposure levels to <it>Anopheles gambiae </it>bites, estimated by classical entomological methods, and the median IgG levels or the percentage of immune responders measuring the contact between human populations and <it>Anopheles </it>mosquitoes. Interestingly, immunological parameters seemed to better discriminate the exposure level to <it>Anopheles </it>bites between different exposure groups of districts.</p> <p>Conclusions</p> <p>Specific human IgG responses to gSG6-P1 peptide biomarker represent, at the population and individual levels, a credible new alternative tool to assess accurately the heterogeneity of exposure level to <it>Anopheles </it>bites and malaria risk in low urban transmission areas. The development of such biomarker tool would be particularly relevant for mapping and monitoring malaria risk and for measuring the efficiency of vector control strategies in these specific settings.</p
    corecore