26,680 research outputs found

    Wind-tunnel investigation of aerodynamic loading on a 0.237-scale model of a remotely piloted research vehicle with a thick, high-aspect-ratio supercritical wing

    Get PDF
    Wind-tunnel measurements were made of the wing-surface static-pressure distributions on a 0.237 scale model of a remotely piloted research vehicle equipped with a thick, high-aspect-ratio supercritical wing. Data are presented for two model configurations (with and without a ventral pod) at Mach numbers from 0.70 to 0.92 at angles of attack from -4 deg to 8 deg. Large variations of wing-surface local pressure distributions were developed; however, the characteristic supercritical-wing pressure distribution occurred near the design condition of 0.80 Mach number and 2 deg angle of attack. The significant variations of the local pressure distributions indicated pronounced shock-wave movements that were highly sensitive to angle of attack and Mach number. The effect of the vertical pod varied with test conditions; however at the higher Mach numbers, the effects on wing flow characteristics were significant at semispan stations as far outboard as 0.815. There were large variations of the wing loading in the range of test conditions, both model configurations exhibited a well-defined peak value of normal-force coefficient at the cruise angle of attack (2 deg) and Mach number (0.80)

    Lunar penetrometer Patent

    Get PDF
    Development and characteristics of pentrometer for measuring physical properties of lunar surfac

    A helium-3 refrigerator employing capillary confinement of liquid cryogen

    Get PDF
    A condensation refrigerator suitable for operation in a zero gravity space environment was constructed. The condensed liquid refrigerant is confined by surface tension inside a porous metal matrix. Helium-4 and helium-3 gases were condensed and held in a copper matrix. Evaporative cooling of confined liquid helium-4 resulted in a temperature of 1.4K. Using a zeolite adsorption pump external to the cryostat, a temperature of 0.6 K was achieved through evaporative cooling of liquid helium-3. The amount of time required for complete evaporation of a controlled mass of liquid helium-4 contained in the copper matrix was measured as a function of the applied background power. For heating powers below 18 mW the measured times are consistent with the normal boiling of the confined volume of liquid refrigerant. At background powers above 18 mW the rapid rise in the temperature of the copper matrix the signature of the absence of confined liquid occurs in a time a factor of two shorter than that expected on the basis of an extrapolation of the low power data

    Application of composites to the selective reinforcement of metallic aerospace structures

    Get PDF
    The use of composite materials to selectively reinforce metallic structures provides a low-cost way to reduce weight and a means of minimizing the risks usually associated with the introduction of new materials. An overview is presented of the NASA Langley Research Center programs to identify the advantages and to develop the potential of the selective reinforcement approach to the use of composites. These programs have shown that selective reinforcement provides excellent strength and stiffness improvements to metallic structures. Significant weight savings can be obtained in a cost effective manner. Flight service programs which have been initiated to validate further the merits of selective reinforcement are described

    Monte Carlo Simulations of Hadronic Fragmentation Functions using NJL-Jet Model

    Get PDF
    The recently developed Nambu-Jona-Lasinio (NJL) - Jet model is used as an effective chiral quark theory to calculate the quark fragmentation functions to pions, kaons, nucleons, and antinucleons. The effects of the vector mesons rho, K* and phi on the production of secondary pions and kaons are included. The fragmentation processes to nucleons and antinucleons are described by using the quark-diquark picture, which has been shown to give a reasonable description of quark distribution functions. We incorporate effects of next-to-leading order (NLO) in the Q^2 evolution, and compare our results with the empirical fragmentation functions.Comment: 27 pages, 13 figure

    Medium Modifications of Hadron Properties and Partonic Processes

    Full text link
    Chiral symmetry is one of the most fundamental symmetries in QCD. It is closely connected to hadron properties in the nuclear medium via the reduction of the quark condensate , manifesting the partial restoration of chiral symmetry. To better understand this important issue, a number of Jefferson Lab experiments over the past decade have focused on understanding properties of mesons and nucleons in the nuclear medium, often benefiting from the high polarization and luminosity of the CEBAF accelerator. In particular, a novel, accurate, polarization transfer measurement technique revealed for the first time a strong indication that the bound proton electromagnetic form factors in 4He may be modified compared to those in the vacuum. Second, the photoproduction of vector mesons on various nuclei has been measured via their decay to e+e- to study possible in-medium effects on the properties of the rho meson. In this experiment, no significant mass shift and some broadening consistent with expected collisional broadening for the rho meson has been observed, providing tight constraints on model calculations. Finally, processes involving in-medium parton propagation have been studied. The medium modifications of the quark fragmentation functions have been extracted with much higher statistical accuracy than previously possible.Comment: to appear in J. Phys.: Conf. Proc. "New Insights into the Structure of Matter: The First Decade of Science at Jefferson Lab", eds. D. Higinbotham, W. Melnitchouk, A. Thomas; added reference

    The Defence Of Portsmouth By Means Of Advanced Sea Works

    Get PDF
    n/

    Direct and indirect lactate oxidation in trained and untrained men.

    Get PDF
    Lactate has been shown to be an important oxidative fuel. We aimed to quantify the total lactate oxidation rate (Rox) and its direct vs. indirect (glucose that is gluconeogenically derived from lactate and subsequently oxidized) components (mg·kg(-1)·min(-1)) during rest and exercise in humans. We also investigated the effects of endurance training, exercise intensity, and blood lactate concentration ([lactate]b) on direct and indirect lactate oxidation. Six untrained (UT) and six trained (T) men completed 60 min of constant load exercise at power outputs corresponding to their lactate threshold (LT). T subjects completed two additional 60-min sessions of constant load exercise at 10% below the LT workload (LT-10%), one of which included a lactate clamp (LC; LT-10%+LC). Rox was higher at LT in T [22.7 ± 2.9, 75% peak oxygen consumption (Vo2peak)] compared with UT (13.4 ± 2.5, 68% Vo2peak, P < 0.05). Increasing [lactate]b (LT-10%+LC, 67% Vo2peak) significantly increased lactate Rox (27.9 ± 3.0) compared with its corresponding LT-10% control (15.9 ± 2.2, P < 0.05). Direct and indirect Rox increased significantly from rest to exercise, and their relative partitioning remained constant in all trials but differed between T and UT: direct oxidation comprised 75% of total lactate oxidation in UT and 90% in T, suggesting the presence of training-induced adaptations. Partitioning of total carbohydrate (CHO) use showed that subjects derived one-third of CHO energy from blood lactate, and exogenous lactate infusion increased lactate oxidation significantly, causing a glycogen-sparing effect in exercising muscle
    corecore