62 research outputs found

    Immunological Change in a Parasite-Impoverished Environment: Divergent Signals from Four Island Taxa

    Get PDF
    Dramatic declines of native Hawaiian avifauna due to the human-mediated emergence of avian malaria and pox prompted an examination of whether island taxa share a common altered immunological signature, potentially driven by reduced genetic diversity and reduced exposure to parasites. We tested this hypothesis by characterizing parasite prevalence, genetic diversity and three measures of immune response in two recently-introduced species (Neochmia temporalis and Zosterops lateralis) and two island endemics (Acrocephalus aequinoctialis and A. rimitarae) and then comparing the results to those observed in closely-related mainland counterparts. The prevalence of blood parasites was significantly lower in 3 of 4 island taxa, due in part to the absence of certain parasite lineages represented in mainland populations. Indices of genetic diversity were unchanged in the island population of N. temporalis; however, allelic richness was significantly lower in the island population of Z. lateralis while both allelic richness and heterozygosity were significantly reduced in the two island-endemic species examined. Although parasite prevalence and genetic diversity generally conformed to expectations for an island system, we did not find evidence for a pattern of uniformly altered immune responses in island taxa, even amongst endemic taxa with the longest residence times. The island population of Z. lateralis exhibited a significantly reduced inflammatory cell-mediated response while levels of natural antibodies remained unchanged for this and the other recently introduced island taxon. In contrast, the island endemic A. rimitarae exhibited a significantly increased inflammatory response as well as higher levels of natural antibodies and complement. These measures were unchanged or lower in A. aequinoctialis. We suggest that small differences in the pathogenic landscape and the stochastic history of mutation and genetic drift are likely to be important in shaping the unique immunological profiles of small isolated populations. Consequently, predicting the impact of introduced disease on the many other endemic faunas of the remote Pacific will remain a challenge

    The Homotopy Groups of a Triad

    No full text

    SILICON / SILICON OXIDE / LPCVD SILICON NITRIDE STACKS: THE EFFECT OF OXIDE THICKNESS ON BULK DAMAGE AND SURFACE PASSIVATION

    No full text
    ABSTRACT: Silicon / thermally grown silicon dioxide / LPCVD silicon nitride stacks were formed to investigate the influence of the oxide thickness on silicon bulk and surface properties after thermal processing. With no oxide, the LPCVD silicon nitride layer causes serious irreversible bulk damage to silicon wafers after a high temperature treatment. A thin oxide layer (~10nm) helps to substantially reduce the damage. A thick oxide (more than 50nm) can help completely eliminate the bulk damage. An increase of surface states was indicated by an increase of emitter the saturation current density for the stacks with thin oxide layers after high temperature treatments. Even after a re-growth of thick oxide layer and forming gas anneal, the stacks previously without oxide layer shows a much higher emitter saturation current value, which indicates silicon nitride causes a serious Si-SiO 2 interface damage

    Marrying Hydrological Modelling and Integrated Assessment for the needs of Water Resource Management

    No full text
    This paper discusses the integration of hydrology with other disciplines using an Integrated Assessment (IA) and modelling approach to the management and allocation of water resources. Recent developments in the field of socio-hydrology aim to develop stronger relationships between hydrology and the human dimensions of Water Resource Management (WRM). This should build on an existing wealth of knowledge and experience of coupled human–water systems. To further strengthen this relationship and contribute to this broad body of knowledge, we propose a strong and durable "marriage" between IA and hydrology. The foundation of this marriage requires engagement with appropriate concepts, model structures, scales of analyses, performance evaluation and communication – and the associated tools and models that are needed for pragmatic deployment or operation. To gain insight into how this can be achieved, an IA case study in water allocation in the Lower Namoi catchment, NSW, Australia is presented

    A reassessment of the Lower Namoi Catchment aquifer architecture and hydraulic connectivity with reference to climate drivers

    No full text
    We demonstrate the need for better representations of aquifer architecture to understand hydraulic connectivity and manage groundwater allocations for the ~140 m-thick alluvial sequences in the Lower Namoi Catchment, Australia. In the 1980s, an analysis of palynological and groundwater hydrograph data resulted in a simple three-layer stratigraphic/hydrostratigraphic representation for the aquifer system, consisting of an unconfined aquifer overlying two semi-confined aquifers. We present an analysis of 278 borehole lithological logs within the catchment and show that the stratigraphy is far more complex. The architectural features and the net-to-gross line-plot of the valley-filling sequence are best represented by a distributive fluvial system, where the avulsion frequency increases at a slower rate than the aggradation rate.We also show that an improved understanding of past climates contextualises the architectural features observable in the valley-filling sequence, and that the lithofacies distribution captures information about the impact of climate change during the Neogene and Quaternary. We demonstrate the correlation between climate and the vertical lithological succession by correlating the sediment net-to-gross ratio line-plot with the marine benthic oxygen isotope line-plot - a climate change proxy. Pollens indicate that there was a transition from a relatively wet climate in the mid-late Miocene to a drier climate in the Pleistocene, with a continuing drying trend until present. Groundwater is currently extracted from the sand and gravel belts associated with the high-energy wetter climate. However, some of these channel belts are disconnected from the modern river and flood zone. We show that the cutoff between the hydraulically well- and poorly connected portions of the valley-filling sequence matches the connectivity threshold expected from a fluvial system. \ua9 2014 \ua9 2014 Geological Society of Australia

    Diamond encapsulated photovoltaics for transdermal power delivery

    No full text
    A safe, compact and robust means of wireless energy transfer across the skin barrier is a key requirement for implantable electronic devices. One possible approach is photovoltaic (PV) energy delivery using optical illumination at near infrared (NIR) wavelengths, to which the skin is highly transparent. In the work presented here, a subcutaneously implantable silicon PV cell, operated in conjunction with an external NIR laser diode, is developed as a power delivery system. The biocompatibility and long-term biostability of the implantable PV is ensured through the use of an hermetic container, comprising a transparent diamond capsule and platinum wire feedthroughs. A wavelength of 980nm is identified as the optimum operating point based on the PV cell's external quantum efficiency, the skin's transmission spectrum, and the wavelength dependent safe exposure limit of the skin. In bench-top experiments using an external illumination intensity of 0.7W/cm2, a peak output power of 2.7mW is delivered to the implant with an active PV cell dimension of 1.5×1.5×0.06mm3. This corresponds to a volumetric power output density of ~20mW/mm3, significantly higher than power densities achievable using inductively coupled coil-based approaches used in other medical implant systems. This approach paves the way for further ministration of bionic implants

    A reassessment of the Lower Namoi Catchment aquifer architecture and hydraulic connectivity with reference to climate drivers

    No full text
    We demonstrate the need for better representations of aquifer architecture to understand hydraulic connectivity and manage groundwater allocations for the ~140 m-thick alluvial sequences in the Lower Namoi Catchment, Australia. In the 1980s, an analysis of palynological and groundwater hydrograph data resulted in a simple three-layer stratigraphic/hydrostratigraphic representation for the aquifer system, consisting of an unconfined aquifer overlying two semi-confined aquifers. We present an analysis of 278 borehole lithological logs within the catchment and show that the stratigraphy is far more complex. The architectural features and the net-to-gross line-plot of the valley-filling sequence are best represented by a distributive fluvial system, where the avulsion frequency increases at a slower rate than the aggradation rate.We also show that an improved understanding of past climates contextualises the architectural features observable in the valley-filling sequence, and that the lithofacies distribution captures information about the impact of climate change during the Neogene and Quaternary. We demonstrate the correlation between climate and the vertical lithological succession by correlating the sediment net-to-gross ratio line-plot with the marine benthic oxygen isotope line-plot - a climate change proxy. Pollens indicate that there was a transition from a relatively wet climate in the mid-late Miocene to a drier climate in the Pleistocene, with a continuing drying trend until present. Groundwater is currently extracted from the sand and gravel belts associated with the high-energy wetter climate. However, some of these channel belts are disconnected from the modern river and flood zone. We show that the cutoff between the hydraulically well- and poorly connected portions of the valley-filling sequence matches the connectivity threshold expected from a fluvial system
    corecore