30,208 research outputs found

    Linearized large signal modeling, analysis, and control design of phase-controlled series-parallel resonant converters using state feedback

    Get PDF
    This paper proposes a linearized large signal state-space model for the fixed-frequency phase-controlled series-parallel resonant converter. The proposed model utilizes state feedback of the output filter inductor current to perform linearization. The model combines multiple-frequency and average state-space modeling techniques to generate an aggregate model with dc state variables that are relatively easier to control and slower than the fast resonant tank dynamics. The main objective of the linearized model is to provide a linear representation of the converter behavior under large signal variation which is suitable for faster simulation and large signal estimation/calculation of the converter state variables. The model also provides insight into converter dynamics as well as a simplified reduced order transfer function for PI closed-loop design. Experimental and simulation results from a detailed switched converter model are compared with the proposed state-space model output to verify its accuracy and robustness

    Analysis and design of a modular multilevel converter with trapezoidal modulation for medium and high voltage DC-DC transformers

    Get PDF
    Conventional dual active bridge topologies provide galvanic isolation and soft-switching over a reasonable operating range without dedicated resonant circuits. However, scaling the two-level dual active bridge to higher dc voltage levels is impeded by several challenges among which the high dv/dt stress on the coupling transformer insulation. Gating and thermal characteristics of series switch arrays add to the limitations. To avoid the use of standard bulky modular multilevel bridges, this paper analyzes an alternative modulation technique where staircase approximated trapezoidal voltage waveforms are produced; thus alleviating developed dv/dt stresses. Modular design is realized by the utilization of half-bridge chopper cells. Therefore, the analyzed converter is a modular multi-level converter operated in a new mode with no common-mode dc arm currents as well as reduced capacitor size, hence reduced cell footprint. Suitable switching patterns are developed and various design and operation aspects are studied. Soft switching characteristics will be shown to be comparable to those of the two-level dual active bridge. Experimental results from a scaled test rig validate the presented concept

    Multiresolution analysis in statistical mechanics. I. Using wavelets to calculate thermodynamic properties

    Full text link
    The wavelet transform, a family of orthonormal bases, is introduced as a technique for performing multiresolution analysis in statistical mechanics. The wavelet transform is a hierarchical technique designed to separate data sets into sets representing local averages and local differences. Although one-to-one transformations of data sets are possible, the advantage of the wavelet transform is as an approximation scheme for the efficient calculation of thermodynamic and ensemble properties. Even under the most drastic of approximations, the resulting errors in the values obtained for average absolute magnetization, free energy, and heat capacity are on the order of 10%, with a corresponding computational efficiency gain of two orders of magnitude for a system such as a 4×44\times 4 Ising lattice. In addition, the errors in the results tend toward zero in the neighborhood of fixed points, as determined by renormalization group theory.Comment: 13 pages plus 7 figures (PNG

    Fourth-generation SM imprints in B -> K^*l^+l^- decays with polarized K^*

    Full text link
    The implication of the fourth-generation quarks in the B -> K^*l^+l^- (l=mu,tau) decays, when K^* meson is longitudinally or transversely polarized, is presented. In this context, the dependence of the branching ratio with polarized K^* and the helicity fractions (f_{L,T}) of K^* meson are studied. It is observed that the polarized branching ratios as well as helicity fractions are sensitive to the NP parameters, especially when the final state leptons are tauons. Hence the measurements of these observables at LHC can serve as a good tool to investigate the indirect searches of new physics beyond the Standard Model.Comment: 13 pages, 10 figures, V2: some of the graphs are modified according to the new data from recent experiments. arXiv admin note: substantial text overlap with arXiv:1107.569

    A modular multilevel based high-voltage pulse generator for water disinfection applications

    Get PDF
    The role of irreversible electroporation using pulsed electric field (PEF) is to generate high voltage (HV) pulses with a predefined magnitude and duration. These HV pulses are applied to the treatment chamber until decontamination of the sample is completed. In this paper, a new topology for HV rectangular pulse generation for water disinfection applications is introduced. The proposed topology has four arms comprised of series connected half H-bridge modular multilevel converter cells. The rectangular pulse characteristics can be controlled via a software controller without any physical changes in power topology. The converter is capable of generating both bipolar and monopolar HV pulses with micro-second pulse durations at a high frequency rate with different characteristics. Hence, the proposed topology provides flexibility by software control, along with hardware modularity, scalability, and redundancy. Moreover, a cell's capacitance is relatively small which drastically reduces the converter footprint. The adopted charging and discharging process of the cell capacitors in this topology eliminate the need of any voltage measurements or complex control for cell-capacitors voltage balance. Consequently, continuity of converter operation is assured under cell malfunction. In this paper, analysis and cell-capacitor sizing of the proposed topology are detailed. Converter operation is verified using MATLAB/Simulink simulation and scaled experimentation

    Second Virial Coefficient for Noncommutative Space

    Get PDF
    The second virial coefficient B2nc(T)B_{2}^{nc}(T) for non-interacting particles moving in a two-dimensional noncommutative space and in the presence of a uniform magnetic field B⃗\vec B is presented. The noncommutativity parameter \te can be chosen such that the B2nc(T)B_{2}^{nc}(T) can be interpreted as the second virial coefficient for anyons of statistics \al in the presence of B⃗\vec B and living on the commuting plane. In particular in the high temperature limit \be\lga 0, we establish a relation between the parameter \te and the statistics \al. Moreover, B2nc(T)B_{2}^{nc}(T) can also be interpreted in terms of composite fermions.Comment: 11 pages, misprints corrected and references adde
    • …
    corecore