2,986 research outputs found

    The influence of spin-dependent phases of tunneling electrons on the conductance of a point ferromagnet/isolator/d-wave superconductor contact

    Full text link
    The influence of phase shifts of electron waves passing through and reflected by the potential barrier on the Andreev reflection in a ferromagnet/isolator/d-wave superconductor (FIS) contact is studied. It is found that in a superconductor the surface spin-dependent Andreev bound states inside the superconducting gap are formed as a result of the interference of electron-like and hole-like quasiparticles due to repeated Andreev reflections. The peak in the conductance of the FIS contact at the zero potential for the (110)-oriented superconductor disappears rapidly as the polarization of a ferromagnet increases, whereas for the (100)-oriented superconductor it appears. The physical reason for this behavior of conductance is discussed.Comment: 8 pages, 4 figure

    High-power broadband laser source tunable from 3.0 um to 4.4 um based on a femtosecond Yb:fiber oscillator

    Get PDF
    We describe a tunable broadband mid-infrared laser source based on difference-frequency mixing of a 100 MHz femtosecond Yb:fiber laser oscillator and a Raman-shifted soliton generated with the same laser. The resulting light is tunable over 3.0 um to 4.4 um, with a FWHM bandwidth of 170 nm and maximum average output power up to 125 mW. The noise and coherence properties of this source are also investigated and described.Comment: To appear in Optics Letter

    Sub-wavelength surface IR imaging of soft-condensed matter

    Full text link
    Outlined here is a technique for sub-wavelength infrared surface imaging performed using a phase matched optical parametric oscillator laser and an atomic force microscope as the detection mechanism. The technique uses a novel surface excitation illumination approach to perform simultaneously chemical mapping and AFM topography imaging with an image resolution of 200 nm. This method was demonstrated by imaging polystyrene micro-structures

    Boundary resistance in magnetic multilayers

    Full text link
    Quasiclassical boundary conditions for electrochemical potentials at the interface between diffusive ferromagnetic and non-magnetic metals are derived for the first time. An expression for the boundary resistance accurately accounts for the momentum conservation law as well as essential gradients of the chemical potentials. Conditions are established at which spin-asymmetry of the boundary resistance has positive or negative sign. Dependence of the spin asymmetry and the absolute value of the boundary resistance on the exchange splitting of the conduction band opens up new possibility to estimate spin polarization of the conduction band of ferromagnetic metals. Consistency of the theory is checked on existing experimental data.Comment: 8 pages, 3 figures, designed using IOPART styl

    The influence of spin-dependent phases of tunneling electrons on the conductance of a point ferromagnet/isolator/superconductor contact

    Full text link
    The Andreev reflection probability for a ferromagnet/isolator/superconductor (FIS) contact at the arbitrary spin-dependent amplitudes of the electron waves transmitted through and reflected from the potential barrier is found. It is shown that Andreev reflection probabilities of electron and hole excitations in the FIS contact are different. The energy levels of Andreev bound states are found. The ballistic conductance of the point FIS contact is calculated.Comment: e.g.:10 pages, 3 figures added in tex. file: abstract and article's titl

    Re-entrant superconductivity in Nb/Cu(1-x)Ni(x) bilayers

    Full text link
    We report on the first observation of a pronounced re-entrant superconductivity phenomenon in superconductor/ferromagnetic layered systems. The results were obtained using a superconductor/ferromagnetic-alloy bilayer of Nb/Cu(1-x)Ni(x). The superconducting transition temperature T_{c} drops sharply with increasing thickness d_{CuNi} of the ferromagnetic layer, until complete suppression of superconductivity is observed at d_{CuNi}= 4 nm. Increasing the Cu(1-x)Ni(x) layer thickness further, superconductivity reappears at d_{CuNi}=13 nm. Our experiments give evidence for the pairing function oscillations associated with a realization of the quasi-one dimensional Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) like state in the ferromagnetic layer.Comment: 3 pages, 3 figures, REVTEX4/twocolum
    corecore