16 research outputs found

    Active and passive cigarette smoking and breast cancer risk: results from the EPIC cohort

    No full text
    Recent cohort studies suggest that increased breast cancer risks were associated with longer smoking duration, higher pack-years and a dose-response relationship with increasing pack-years of smoking between menarche and first full-term pregnancy (FFTP). Studies with comprehensive quantitative life-time measures of passive smoking suggest an association between passive smoking dose and breast cancer risk. We conducted a study within the European Prospective Investigation into Cancer and Nutrition to examine the association between passive and active smoking and risk of invasive breast cancer and possible effect modification by known breast cancer risk factors. Among the 322,988 women eligible for the study, 9,822 developed breast cancer (183,608 women with passive smoking information including 6,264 cases). When compared to women who never smoked and were not being exposed to passive smoking at home or work at the time of study registration, current, former and currently exposed passive smokers were at increased risk of breast cancer (hazard ratios (HR) [95% confidence interval (CI)] 1.16 [1.05–1.28], 1.14 [1.04–1.25] and 1.10 [1.01–1.20], respectively). Analyses exploring associations in different periods of life showed the most important increase in risk with pack-years from menarche to FFTP (1.73 [1.29–2.32] for every increase of 20 pack-years) while pack-years smoked after menopause were associated with a significant decrease in breast cancer risk (HR = 0.53, 95% CI: 0.34–0.82 for every increase of 20 pack-years). Our results provide an important replication, in the largest cohort to date, that smoking (passively or actively) increases breast cancer risk and that smoking between menarche and FFTP is particularly deleterious

    Air pollution and nonmalignant respiratory mortality in 16 cohorts within the ESCAPE project

    No full text
    Rationale: Prospective cohort studies have shown that chronic exposure to particulate matter and traffic-related air pollution is associated with reduced survival. However, the effects on nonmalignant respiratory mortality are less studied, and the data reported are less consistent. Objectives: We have investigated the relationship of long-term exposure to air pollution and nonmalignant respiratory mortality in 16 cohorts with individual level data within the multicenter European Study of Cohorts for Air Pollution Effects (ESCAPE). Methods: Data from 16 ongoing cohort studies from Europe were used. The total number of subjects was 307,553. There were 1,559 respiratory deaths during follow-up. Measurements and Main Results: Air pollution exposure was estimated by land use regression models at the baseline residential addresses of study participants and traffic-proximity variables were derived from geographical databases following a standardized procedure within the ESCAPE study. Cohort-specific hazard ratios obtained by Cox proportional hazard models from standardized individual cohort analyses were combined using metaanalyses. We found no significant associations between air pollution exposure and nonmalignant respiratory mortality. Most hazard ratios were slightly below unity, with the exception of the traffic-proximity indicators. Conclusions: In this study of 16 cohorts, there was no association between air pollution exposure and nonmalignant respiratorymortality.Copyright © 2014 by the American Thoracic Society

    Air pollution and nonmalignant respiratory mortality in 16 cohorts within the ESCAPE project.

    No full text
    Rationale: Prospective cohort studies have shown that chronic exposure to particulate matter and traffic-related air pollution is associated with reduced survival. However, the effects on nonmalignant respiratory mortality are less studied, and the data reported are less consistent. Objectives: We have investigated the relationship of long-term exposure to air pollution and nonmalignant respiratory mortality in 16 cohorts with individual level data within the multicenter European Study of Cohorts for Air Pollution Effects (ESCAPE). Methods: Data from 16 ongoing cohort studies from Europe were used. The total number of subjects was 307,553. There were 1,559 respiratory deaths during follow-up. Measurements and Main Results: Air pollution exposure was estimated by land use regression models at the baseline residential addresses of study participants and traffic-proximity variables were derived from geographical databases following a standardized procedure within, the ESCAPE study. Cohort-specific hazard ratios obtained by Cox proportional hazard models from standardized individual cohort analyses were combined using metaanalyses. We found no significant associations between air pollution exposure and nonmalignant respiratory mortality. Most hazard ratios were slightly below unity, with the exception of the traffic-proximity indicators. Conclusions: In this study of 16 cohorts, there was no-association between air pollution exposure and nonmalignant respiratory mortality

    Air pollution and nonmalignant respiratory mortality in 16 cohorts within the ESCAPE project.

    No full text
    RATIONALE: Prospective cohort studies have shown that chronic exposure to particulate matter and traffic-related air pollution is associated with reduced survival. However, the effects on nonmalignant respiratory mortality are less studied, and the data reported are less consistent. OBJECTIVES: We have investigated the relationship of long-term exposure to air pollution and nonmalignant respiratory mortality in 16 cohorts with individual level data within the multicenter European Study of Cohorts for Air Pollution Effects (ESCAPE). METHODS: Data from 16 ongoing cohort studies from Europe were used. The total number of subjects was 307,553. There were 1,559 respiratory deaths during follow-up. MEASUREMENTS AND MAIN RESULTS: Air pollution exposure was estimated by land use regression models at the baseline residential addresses of study participants and traffic-proximity variables were derived from geographical databases following a standardized procedure within the ESCAPE study. Cohort-specific hazard ratios obtained by Cox proportional hazard models from standardized individual cohort analyses were combined using metaanalyses. We found no significant associations between air pollution exposure and nonmalignant respiratory mortality. Most hazard ratios were slightly below unity, with the exception of the traffic-proximity indicators. CONCLUSIONS: In this study of 16 cohorts, there was no association between air pollution exposure and nonmalignant respiratory mortality

    Air pollution and lung cancer incidence in 17 European cohorts: Prospective analyses from the European Study of Cohorts for Air Pollution Effects (ESCAPE)

    No full text
    Background: Ambient air pollution is suspected to cause lung cancer. We aimed to assess the association between long-term exposure to ambient air pollution and lung cancer incidence in European populations. Methods: This prospective analysis of data obtained by the European Study of Cohorts for Air Pollution Effects used data from 17 cohort studies based in nine European countries. Baseline addresses were geocoded and we assessed air pollution by land-use regression models for particulate matter (PM) with diameter of less than 10 μm (PM10), less than 2·5 μm (PM2·5), and between 2·5 and 10 μm (PMcoarse), soot (PM2·5absorbance), nitrogen oxides, and two traffic indicators. We used Cox regression models with adjustment for potential confounders for cohort-specific analyses and random effects models for meta-analyses. Findings: The 312-944 cohort members contributed 4-013-131 person-years at risk. During follow-up (mean 12·8 years), 2095 incident lung cancer cases were diagnosed. The meta-analyses showed a statistically significant association between risk for lung cancer and PM10 (hazard ratio [HR] 1·22 [95% CI 1·03-1·45] per 10 μg/m3). For PM2·5 the HR was 1·18 (0·96-1·46) per 5 μg/m3. The same increments of PM10 and PM2·5 were associated with HRs for adenocarcinomas of the lung of 1·51 (1·10-2·08) and 1·55 (1·05-2·29), respectively. An increase in road traffic of 4000 vehicle-km per day within 100 m of the residence was associated with an HR for lung cancer of 1·09 (0·99-1·21). The results showed no association between lung cancer and nitrogen oxides concentration (HR 1·01 [0·95-1·07] per 20 μg/m3) or traffic intensity on the nearest street (HR 1·00 [0·97-1·04] per 5000 vehicles per day). Interpretation: Particulate matter air pollution contributes to lung cancer incidence in Europe. Funding: European Community's Seventh Framework Programme. © 2013 Elsevier Ltd

    Air pollution and lung cancer incidence in 17 European cohorts: prospective analyses from the European Study of Cohorts for Air Pollution Effects (ESCAPE).

    No full text
    BACKGROUND: Ambient air pollution is suspected to cause lung cancer. We aimed to assess the association between long-term exposure to ambient air pollution and lung cancer incidence in European populations. METHODS: This prospective analysis of data obtained by the European Study of Cohorts for Air Pollution Effects used data from 17 cohort studies based in nine European countries. Baseline addresses were geocoded and we assessed air pollution by land-use regression models for particulate matter (PM) with diameter of less than 10 μm (PM10), less than 2·5 μm (PM2·5), and between 2·5 and 10 μm (PMcoarse), soot (PM2·5absorbance), nitrogen oxides, and two traffic indicators. We used Cox regression models with adjustment for potential confounders for cohort-specific analyses and random effects models for meta-analyses. FINDINGS: The 312 944 cohort members contributed 4 013 131 person-years at risk. During follow-up (mean 12·8 years), 2095 incident lung cancer cases were diagnosed. The meta-analyses showed a statistically significant association between risk for lung cancer and PM10 (hazard ratio [HR] 1·22 [95% CI 1·03-1·45] per 10 μg/m(3)). For PM2·5 the HR was 1·18 (0·96-1·46) per 5 μg/m(3). The same increments of PM10 and PM2·5 were associated with HRs for adenocarcinomas of the lung of 1·51 (1·10-2·08) and 1·55 (1·05-2·29), respectively. An increase in road traffic of 4000 vehicle-km per day within 100 m of the residence was associated with an HR for lung cancer of 1·09 (0·99-1·21). The results showed no association between lung cancer and nitrogen oxides concentration (HR 1·01 [0·95-1·07] per 20 μg/m(3)) or traffic intensity on the nearest street (HR 1·00 [0·97-1·04] per 5000 vehicles per day). INTERPRETATION: Particulate matter air pollution contributes to lung cancer incidence in Europe. FUNDING: European Community's Seventh Framework Programme

    Long-term exposure to elemental constituents of particulate matter and cardiovascular mortality in 19 European cohorts: Results from the ESCAPE and TRANSPHORM projects

    No full text
    Background: Associations between long-term exposure to ambient particulate matter (PM) and cardiovascular (CVD) mortality have been widely recognized. However, health effects of long-term exposure to constituents of PM on total CVD mortality have been explored in a single study only. Aims: The aim of this study was to examine the association of PM composition with cardiovascular mortality. Methods: We used data from 19 European ongoing cohorts within the framework of the ESCAPE (European Study of Cohorts for Air Pollution Effects) and TRANSPHORM (Transport related Air Pollution and Health impacts - Integrated Methodologies for Assessing Particulate Matter) projects. Residential annual average exposure to elemental constituents within particle matter smaller than 2.5 and 10μm (PM2.5 and PM10) was estimated using Land Use Regression models. Eight elements representing major sources were selected a priori (copper, iron, potassium, nickel, sulfur, silicon, vanadium and zinc). Cohort-specific analyses were conducted using Cox proportional hazards models with a standardized protocol. Random-effects meta-analysis was used to calculate combined effect estimates. Results: The total population consisted of 322,291 participants, with 9545 CVD deaths. We found no statistically significant associations between any of the elemental constituents in PM2.5 or PM10 and CVD mortality in the pooled analysis. Most of the hazard ratios (HRs) were close to unity, e.g. for PM10 Fe the combined HR was 0.96 (0.84-1.09). Elevated combined HRs were found for PM2.5 Si (1.17, 95% CI: 0.93-1.47), and S in PM2.5 (1.08, 95% CI: 0.95-1.22) and PM10 (1.09, 95% CI: 0.90-1.32). Conclusion: In a joint analysis of 19 European cohorts, we found no statistically significant association between long-term exposure to 8 elemental constituents of particles and total cardiovascular mortality. •Few studies explored long term effects of particle composition exposure to cardiovascular mortality.•We included a large population of 322,291 subjects from 19 cohorts in 12 countries of Europe.•Standardized cohort specific analyses were conducted individually and the results were pooled in meta-analysis.•We found no significant association between elemental constituents representing major sources and cardiovascular mortality.•Positive though non-significant associations were found for S and Si. © 2014 Elsevier Ltd

    Effects of long-term exposure to air pollution on natural-cause mortality: An analysis of 22 European cohorts within the multicentre ESCAPE project

    No full text
    Background Few studies on long-term exposure to air pollution and mortality have been reported from Europe. Within the multicentre European Study of Cohorts for Air Pollution Effects (ESCAPE), we aimed to investigate the association between natural-cause mortality and long-term exposure to several air pollutants. Methods We used data from 22 European cohort studies, which created a total study population of 367 251 participants. All cohorts were general population samples, although some were restricted to one sex only. With a strictly standardised protocol, we assessed residential exposure to air pollutants as annual average concentrations of particulate matter (PM) with diameters of less than 2.5 μm (PM2.5), less than 10 μm (PM 10), and between 10 μm and 2.5 μm (PMcoarse), PM2.5 absorbance, and annual average concentrations of nitrogen oxides (NO2 and NOx) with land use regression models. We also investigated two traffic intensity variables-traffic intensity on the nearest road (vehicles per day) and total traffic load on all major roads within a 100 m buffer. We did cohort-specific statistical analyses using confounder models with increasing adjustment for confounder variables, and Cox proportional hazards models with a common protocol. We obtained pooled effect estimates through a random-effects metaanalysis. Findings The total study population consisted of 367 251 participants who contributed 5 118 039 person-years at risk (average follow-up 13.9 years), of whom 29 076 died from a natural cause during follow-up. A significantly increased hazard ratio (HR) for PM2.5 of 1.07 (95% CI 1.02-1.13) per 5 μg/m3 was recorded. No heterogeneity was noted between individual cohort effect estimates (I2 p value=0.95). HRs for PM2.5 remained significantly raised even when we included only participants exposed to pollutant concentrations lower than the European annual mean limit value of 25 μg/m3 (HR 1.06, 95% CI 1.00-1.12) or below 20 μg/m3 (1.07, 1.01-1.13). Interpretation Long-term exposure to fine particulate air pollution was associated with natural-cause mortality, even within concentration ranges well below the present European annual mean limit value

    Long-term exposure to air pollution and cardiovascular mortality: an analysis of 22 European cohorts.

    No full text
    BACKGROUND: Air pollution has been associated with cardiovascular mortality, but it remains unclear as to whether specific pollutants are related to specific cardiovascular causes of death. Within the multicenter European Study of Cohorts for Air Pollution Effects (ESCAPE), we investigated the associations of long-term exposure to several air pollutants with all cardiovascular disease (CVD) mortality, as well as with specific cardiovascular causes of death. METHODS: Data from 22 European cohort studies were used. Using a standardized protocol, study area-specific air pollution exposure at the residential address was characterized as annual average concentrations of the following: nitrogen oxides (NO2 and NOx); particles with diameters of less than 2.5 μm (PM2.5), less than 10 μm (PM10), and 10 μm to 2.5 μm (PMcoarse); PM2.5 absorbance estimated by land-use regression models; and traffic indicators. We applied cohort-specific Cox proportional hazards models using a standardized protocol. Random-effects meta-analysis was used to obtain pooled effect estimates. RESULTS: The total study population consisted of 367,383 participants, with 9994 deaths from CVD (including 4,992 from ischemic heart disease, 2264 from myocardial infarction, and 2484 from cerebrovascular disease). All hazard ratios were approximately 1.0, except for particle mass and cerebrovascular disease mortality; for PM2.5, the hazard ratio was 1.21 (95% confidence interval = 0.87-1.69) per 5 μg/m and for PM10, 1.22 (0.91-1.63) per 10 μg/m. CONCLUSION: In a joint analysis of data from 22 European cohorts, most hazard ratios for the association of air pollutants with mortality from overall CVD and with specific CVDs were approximately 1.0, with the exception of particulate mass and cerebrovascular disease mortality for which there was suggestive evidence for an association

    Long-term exposure to air pollution and cardiovascular mortality: An analysis of 22 European cohorts

    No full text
    Background: Air pollution has been associated with cardiovascular mortality, but it remains unclear as to whether specific pollutants are related to specific cardiovascular causes of death. Within the multicenter European Study of Cohorts for Air Pollution Effects (ESCAPE), we investigated the associations of long-term exposure to several air pollutants with all cardiovascular disease (CVD) mortality, as well as with specific cardiovascular causes of death. Methods: Data from 22 European cohort studies were used. Using a standardized protocol, study area-specific air pollution exposure at the residential address was characterized as annual average concentrations of the following: nitrogen oxides (NO2and NOx); particles with diameters of less than 2.5 μm (PM2.5), less than 10 μm (PM10), and 10 μm to 2.5 μm (PMcoarse); PM2.5absorbance estimated by land-use regression models; and traffic indicators. We applied cohort-specific Cox proportional hazards models using a standardized protocol. Random-effects meta-analysis was used to obtain pooled effect estimates. Results: The total study population consisted of 367,383 participants, with 9994 deaths from CVD (including 4,992 from ischemic heart disease, 2264 from myocardial infarction, and 2484 from cerebrovascular disease). All hazard ratios were approximately 1.0, except for particle mass and cerebrovascular disease mortality; for PM2.5, the hazard ratio was 1.21 (95% confidence interval = 0.87-1.69) per 5 μg/m and for PM10, 1.22 (0.91-1.63) per 10 μg/m. Conclusion: In a joint analysis of data from 22 European cohorts, most hazard ratios for the association of air pollutants with mortality from overall CVD and with specific CVDs were approximately 1.0, with the exception of particulate mass and cerebrovascular disease mortality for which there was suggestive evidence for an association. Copyright © 2014 by Lippincott Williams & Wilkins
    corecore