865 research outputs found

    On the Effective Action of Noncommutative Yang-Mills Theory

    Full text link
    We compute here the Yang-Mills effective action on Moyal space by integrating over the scalar fields in a noncommutative scalar field theory with harmonic term, minimally coupled to an external gauge potential. We also explain the special regularisation scheme chosen here and give some links to the Schwinger parametric representation. Finally, we discuss the results obtained: a noncommutative possibly renormalisable Yang-Mills theory.Comment: 19 pages, 6 figures. At the occasion of the "International Conference on Noncommutative Geometry and Physics", April 2007, Orsay (France). To appear in J. Phys. Conf. Se

    Bipartite partial duals and circuits in medial graphs

    Full text link
    It is well known that a plane graph is Eulerian if and only if its geometric dual is bipartite. We extend this result to partial duals of plane graphs. We then characterize all bipartite partial duals of a plane graph in terms of oriented circuits in its medial graph.Comment: v2: minor changes. To appear in Combinatoric

    A Penrose polynomial for embedded graphs

    Get PDF
    We extend the Penrose polynomial, originally defined only for plane graphs, to graphs embedded in arbitrary surfaces. Considering this Penrose polynomial of embedded graphs leads to new identities and relations for the Penrose polynomial which can not be realized within the class of plane graphs. In particular, by exploiting connections with the transition polynomial and the ribbon group action, we find a deletion-contraction-type relation for the Penrose polynomial. We relate the Penrose polynomial of an orientable checkerboard colourable graph to the circuit partition polynomial of its medial graph and use this to find new combinatorial interpretations of the Penrose polynomial. We also show that the Penrose polynomial of a plane graph G can be expressed as a sum of chromatic polynomials of twisted duals of G. This allows us to obtain a new reformulation of the Four Colour Theorem

    Exorcizing the Landau Ghost in Non Commutative Quantum Field Theory

    Full text link
    We show that the simplest non commutative renormalizable field theory, the ϕ4\phi^4 model on four dimensional Moyal space with harmonic potential is asymptotically safe to all orders in perturbation theor

    Renormalization of Non-Commutative Phi^4_4 Field Theory in x Space

    Full text link
    In this paper we provide a new proof that the Grosse-Wulkenhaar non-commutative scalar Phi^4_4 theory is renormalizable to all orders in perturbation theory, and extend it to more general models with covariant derivatives. Our proof relies solely on a multiscale analysis in x space. We think this proof is simpler and could be more adapted to the future study of these theories (in particular at the non-perturbative or constructive level).Comment: 32 pages, v2: correction of lemmas 3.1 and 3.2 with no consequence on the main resul

    One-loop Beta Functions for the Orientable Non-commutative Gross-Neveu Model

    Get PDF
    We compute at the one-loop order the beta-functions for a renormalisable non-commutative analog of the Gross Neveu model defined on the Moyal plane. The calculation is performed within the so called x-space formalism. We find that this non-commutative field theory exhibits asymptotic freedom for any number of colors. The beta-function for the non-commutative counterpart of the Thirring model is found to be non vanishing.Comment: 16 pages, 9 figure

    Rigorous Multicomponent Reactive Separations Modelling : Complete Consideration of Reaction-Diffusion Phenomena

    Get PDF
    This paper gives the first step of the development of a rigorous multicomponent reactive separation model. Such a model is highly essential to further the optimization of acid gases removal plants (CO2 capture, gas treating, etc.) in terms of size and energy consumption, since chemical solvents are conventionally used.Firstly, two main modelling approaches are presented: the equilibrium-based and the rate-based approaches. Secondly, an extended rate-based model with rigorous modelling methodology for diffusion-reaction phenomena is proposed. The film theory and the generalized Maxwell-Stefan equations are used in order to characterize multicomponent interactions. The complete chain of chemical reactions is taken into account. The reactions can be kinetically controlled or at chemical equilibrium, and they are considered for both liquid film and liquid bulk. Thirdly, the method of numerical resolution is described. Coupling the generalized Maxwell-Stefan equations with chemical equilibrium equations leads to a highly non-linear Differential-Algebraic Equations system known as DAE index 3. The set of equations is discretized with finite-differences as its integration by Gear method is complex. The resulting algebraic system is resolved by the Newton- Raphson method. Finally, the present model and the associated methods of numerical resolution are validated for the example of esterification of methanol. This archetype non-electrolytic system permits an interesting analysis of reaction impact on mass transfer, especially near the phase interface. The numerical resolution of the model by Newton-Raphson method gives good results in terms of calculation time and convergence. The simulations show that the impact of reactions at chemical equilibrium and that of kinetically controlled reactions with high kinetics on mass transfer is relatively similar. Moreover, the Fick’s law is less adapted for multicomponent mixtures where some abnormalities such as counter-diffusion take place

    Overview of the parametric representation of renormalizable non-commutative field theory

    Full text link
    We review here the parametric representation of Feynman amplitudes of renormalizable non-commutative quantum field models.Comment: 10 pages, 3 figures, to be published in "Journal of Physics: Conference Series

    Renormalization of the commutative scalar theory with harmonic term to all orders

    Full text link
    The noncommutative scalar theory with harmonic term (on the Moyal space) has a vanishing beta function. In this paper, we prove the renormalizability of the commutative scalar field theory with harmonic term to all orders by using multiscale analysis in the momentum space. Then, we consider and compute its one-loop beta function, as well as the one on the degenerate Moyal space. We can finally compare both to the vanishing beta function of the theory with harmonic term on the Moyal space.Comment: 16 page
    corecore