865 research outputs found
On the Effective Action of Noncommutative Yang-Mills Theory
We compute here the Yang-Mills effective action on Moyal space by integrating
over the scalar fields in a noncommutative scalar field theory with harmonic
term, minimally coupled to an external gauge potential. We also explain the
special regularisation scheme chosen here and give some links to the Schwinger
parametric representation. Finally, we discuss the results obtained: a
noncommutative possibly renormalisable Yang-Mills theory.Comment: 19 pages, 6 figures. At the occasion of the "International Conference
on Noncommutative Geometry and Physics", April 2007, Orsay (France). To
appear in J. Phys. Conf. Se
Bipartite partial duals and circuits in medial graphs
It is well known that a plane graph is Eulerian if and only if its geometric
dual is bipartite. We extend this result to partial duals of plane graphs. We
then characterize all bipartite partial duals of a plane graph in terms of
oriented circuits in its medial graph.Comment: v2: minor changes. To appear in Combinatoric
A Penrose polynomial for embedded graphs
We extend the Penrose polynomial, originally defined only for plane graphs,
to graphs embedded in arbitrary surfaces. Considering this Penrose polynomial
of embedded graphs leads to new identities and relations for the Penrose
polynomial which can not be realized within the class of plane graphs. In
particular, by exploiting connections with the transition polynomial and the
ribbon group action, we find a deletion-contraction-type relation for the
Penrose polynomial. We relate the Penrose polynomial of an orientable
checkerboard colourable graph to the circuit partition polynomial of its medial
graph and use this to find new combinatorial interpretations of the Penrose
polynomial. We also show that the Penrose polynomial of a plane graph G can be
expressed as a sum of chromatic polynomials of twisted duals of G. This allows
us to obtain a new reformulation of the Four Colour Theorem
Exorcizing the Landau Ghost in Non Commutative Quantum Field Theory
We show that the simplest non commutative renormalizable field theory, the
model on four dimensional Moyal space with harmonic potential is
asymptotically safe to all orders in perturbation theor
Renormalization of Non-Commutative Phi^4_4 Field Theory in x Space
In this paper we provide a new proof that the Grosse-Wulkenhaar
non-commutative scalar Phi^4_4 theory is renormalizable to all orders in
perturbation theory, and extend it to more general models with covariant
derivatives. Our proof relies solely on a multiscale analysis in x space. We
think this proof is simpler and could be more adapted to the future study of
these theories (in particular at the non-perturbative or constructive level).Comment: 32 pages, v2: correction of lemmas 3.1 and 3.2 with no consequence on
the main resul
One-loop Beta Functions for the Orientable Non-commutative Gross-Neveu Model
We compute at the one-loop order the beta-functions for a renormalisable
non-commutative analog of the Gross Neveu model defined on the Moyal plane. The
calculation is performed within the so called x-space formalism. We find that
this non-commutative field theory exhibits asymptotic freedom for any number of
colors. The beta-function for the non-commutative counterpart of the Thirring
model is found to be non vanishing.Comment: 16 pages, 9 figure
Rigorous Multicomponent Reactive Separations Modelling : Complete Consideration of Reaction-Diffusion Phenomena
This paper gives the first step of the development of a rigorous multicomponent reactive separation model. Such a model is highly essential to further the optimization of acid gases removal plants (CO2 capture, gas treating, etc.) in terms of size and energy consumption, since chemical solvents are conventionally used.Firstly, two main modelling approaches are presented: the equilibrium-based and the rate-based approaches. Secondly, an extended rate-based model with rigorous modelling methodology for diffusion-reaction phenomena is proposed. The film theory and the generalized Maxwell-Stefan equations are used in order to characterize multicomponent interactions. The complete chain of chemical reactions is taken into account. The reactions can be kinetically controlled or at chemical equilibrium, and they are considered for both liquid film and liquid bulk. Thirdly, the method of numerical resolution is described. Coupling the generalized Maxwell-Stefan equations with chemical equilibrium equations leads to a highly non-linear Differential-Algebraic Equations system known as DAE index 3. The set of equations is discretized with finite-differences as its integration by Gear method is complex. The resulting algebraic system is resolved by the Newton- Raphson method. Finally, the present model and the associated methods of numerical resolution are validated for the example of esterification of methanol. This archetype non-electrolytic system permits an interesting analysis of reaction impact on mass transfer, especially near the phase interface. The numerical resolution of the model by Newton-Raphson method gives good results in terms of calculation time and convergence. The simulations show that the impact of reactions at chemical equilibrium and that of kinetically controlled reactions with high kinetics on mass transfer is relatively similar. Moreover, the Fick’s law is less adapted for multicomponent mixtures where some abnormalities such as counter-diffusion take place
Overview of the parametric representation of renormalizable non-commutative field theory
We review here the parametric representation of Feynman amplitudes of
renormalizable non-commutative quantum field models.Comment: 10 pages, 3 figures, to be published in "Journal of Physics:
Conference Series
Renormalization of the commutative scalar theory with harmonic term to all orders
The noncommutative scalar theory with harmonic term (on the Moyal space) has
a vanishing beta function. In this paper, we prove the renormalizability of the
commutative scalar field theory with harmonic term to all orders by using
multiscale analysis in the momentum space. Then, we consider and compute its
one-loop beta function, as well as the one on the degenerate Moyal space. We
can finally compare both to the vanishing beta function of the theory with
harmonic term on the Moyal space.Comment: 16 page
- …
