492 research outputs found
An integrative approach based on probabilistic modelling and statistical inference for morpho-statistical characterization of astronomical data
This paper describes several applications in astronomy and cosmology that are
addressed using probabilistic modelling and statistical inference
Broad-area diode-pumped 1W femtosecond fiber system
Summary form only given. High-average-power 310-fs pulses were obtained with an all-fiber chirped pulse amplification (CPA) system. Both the oscillator and the power amplifier are based on Er/Yb-doped fiber for cladding-pumping with broad-area laser diodes. A single 10-cm-long fiber grating is employed in the CPA system as a compact femtosecond-pulse stretcher/compressor
Order statistics and heavy-tail distributions for planetary perturbations on Oort cloud comets
This paper tackles important aspects of comets dynamics from a statistical
point of view. Existing methodology uses numerical integration for computing
planetary perturbations for simulating such dynamics. This operation is highly
computational. It is reasonable to wonder whenever statistical simulation of
the perturbations can be much more easy to handle. The first step for answering
such a question is to provide a statistical study of these perturbations in
order to catch their main features. The statistical tools used are order
statistics and heavy tail distributions. The study carried out indicated a
general pattern exhibited by the perturbations around the orbits of the
important planet. These characteristics were validated through statistical
testing and a theoretical study based on Opik theory.Comment: 9 pages, 12 figures, submitted for publication in Astronomy and
Astrophysic
Ultra-large bandwidth hollow-core guiding in all-silica Bragg fibers with nano-supports
We demonstrate a new class of hollow-core Bragg fibers that are composed of
concentric cylindrical silica rings separated by nanoscale support bridges. We
theoretically predict and experimentally observe hollow-core confinement over
an octave frequency range. The bandwidth of bandgap guiding in this new class
of Bragg fibers exceeds that of other hollow-core fibers reported in the
literature. With only three rings of silica cladding layers, these Bragg fibers
achieve propagation loss of the order of 1 dB/m.Comment: 9 pages including 5 figure
Solving the Klein-Gordon equation using Fourier spectral methods: A benchmark test for computer performance
The cubic Klein-Gordon equation is a simple but non-trivial partial
differential equation whose numerical solution has the main building blocks
required for the solution of many other partial differential equations. In this
study, the library 2DECOMP&FFT is used in a Fourier spectral scheme to solve
the Klein-Gordon equation and strong scaling of the code is examined on
thirteen different machines for a problem size of 512^3. The results are useful
in assessing likely performance of other parallel fast Fourier transform based
programs for solving partial differential equations. The problem is chosen to
be large enough to solve on a workstation, yet also of interest to solve
quickly on a supercomputer, in particular for parametric studies. Unlike other
high performance computing benchmarks, for this problem size, the time to
solution will not be improved by simply building a bigger supercomputer.Comment: 10 page
Influence of the coorbital resonance on the rotation of the Trojan satellites of Saturn
The Cassini spacecraft collects high resolution images of the saturnian
satellites and reveals the surface of these new worlds. The shape and rotation
of the satellites can be determined from the Cassini Imaging Science Subsystem
data, employing limb coordinates and stereogrammetric control points. This is
the case for Epimetheus (Tiscareno et al. 2009) that opens elaboration of new
rotational models (Tiscareno et al. 2009; Noyelles 2010; Robutel et al. 2011).
Especially, Epimetheus is characterized by its horseshoe shape orbit and the
presence of the swap is essential to introduce explicitly into rotational
models. During its journey in the saturnian system, Cassini spacecraft
accumulates the observational data of the other satellites and it will be
possible to determine the rotational parameters of several of them. To prepare
these future observations, we built rotational models of the coorbital (also
called Trojan) satellites Telesto, Calypso, Helene, and Polydeuces, in addition
to Janus and Epimetheus. Indeed, Telesto and Calypso orbit around the L_4 and
L_5 Lagrange points of Saturn-Tethys while Helene and Polydeuces are coorbital
of Dione. The goal of this study is to understand how the departure from the
Keplerian motion induced by the perturbations of the coorbital body, influences
the rotation of these satellites. To this aim, we introduce explicitly the
perturbation in the rotational equations by using the formalism developed by
Erdi (1977) to represent the coorbital motions, and so we describe the
rotational motion of the coorbitals, Janus and Epimetheus included, in compact
form
What\u27s in it for men to be allies to women? Examining interpersonal and institutional pressure in driving men\u27s self-interest in allyship
Astrometry via Close Approach Events: Applications to Main-Belt Asteroid (702) Alauda
The release of Gaia catalog is revolutionary to the astronomy of solar system
objects. After some effects such as atmospheric refraction and CCD geometric
distortion have been taken into account, the astrometric precision for
ground-based telescopes can reach the level of tens of milli-arcseconds. If an
object approaches a reference star in a small relative angular distance (less
than 100 arcseconds), which is called close approach event in this work, the
relative positional precision between the object and reference star will be
further improved since the systematic effects of atmospheric turbulence and
local telescope optics can be reduced. To obtain the precise position of a
main-belt asteroid in an close approach event, a second-order angular velocity
model with time is supposed in the sky plane. By fitting the relationship
between the relative angular distance and observed time, we can derive the time
of maximum approximation and calculate the corresponding position of the
asteroid. In practice, 5 nights' CCD observations including 15 close approach
events of main-belt asteroid (702) Alauda are taken for testing by the 1m
telescope at Yunnan Observatory, China. Compared with conventional solutions,
our results show that the positional precision significantly improves, which
reaches better than 4 milli-arcseconds, and 1 milli-arcsecond in the best case
when referenced for JPL ephemeris in both right ascension and declination.Comment: 11 pages, 22 figure
- …
