28 research outputs found

    Physics demos for all UVEG degrees: a unique project in Spain

    Get PDF
    The Physics Demo Project at the University of Valencia (www.uv.es/fisicademos) has developed a collection of physics demonstrations to be used during lectures. It consists of more than 130 experimental demos about different physics topics. More than 30 professors borrow them whenever they lecture on physics in any of our 40 courses in 17 different science or technical degrees, involving 246 ECTS and more than 3500 students. Each demo kit with a simple experimental set displays a particular physics phenomenon. An on-line user guide highlights the main physics principles involved, instructions on how to use it and advices of how to link it to the theoretical concepts or to technical applications. Demo lectures (and collections) are a usual and widespread practice in many countries but not in Spain. This unique initiative aims at the recovery of this practice by involving a growing collaborative team of users and with the aid of educational innovation projects. Here we explain the project content, organization and recent developments. Our experience, together with the positive students comments, allows us to draw the following conclusions: demos introduce the real sensible world in the lecture hall, providing the necessary link between concepts and everyday life, and becoming, again, something more than "chalk and talk"

    Transcriptome profiling of the rice blast fungus during invasive plant infection and in vitro stresses

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Rice blast is the most threatening disease to cultivated rice. <it>Magnaporthe oryzae</it>, its causal agent, is likely to encounter environmental challenges during invasive growth in its host plants that require shifts in gene expression to establish a compatible interaction. Here, we tested the hypothesis that gene expression patterns during <it>in planta </it>invasive growth are similar to <it>in vitro </it>stress conditions, such as nutrient limitation, temperature up shift and oxidative stress, and determined which condition most closely mimicked that of <it>in planta </it>invasive growth. Gene expression data were collected from these <it>in vitro </it>experiments and compared to fungal gene expression during the invasive growth phase at 72 hours post-inoculation in compatible interactions on two grass hosts, rice and barley.</p> <p>Results</p> <p>We identified 4,973 genes that were differentially expressed in at least one of the <it>in planta </it>and <it>in vitro </it>stress conditions when compared to fungal mycelia grown in complete medium, which was used as reference. From those genes, 1,909 showed similar expression patterns between at least one of the <it>in vitro </it>stresses and rice and/or barley. Hierarchical clustering of these 1,909 genes showed three major clusters in which <it>in planta </it>conditions closely grouped with the nutrient starvation conditions. Out of these 1,909 genes, 55 genes and 129 genes were induced and repressed in all treatments, respectively. Functional categorization of the 55 induced genes revealed that most were either related to carbon metabolism, membrane proteins, or were involved in oxidoreduction reactions. The 129 repressed genes showed putative roles in vesicle trafficking, signal transduction, nitrogen metabolism, or molecular transport.</p> <p>Conclusions</p> <p>These findings suggest that <it>M. oryzae </it>is likely primarily coping with nutrient-limited environments at the invasive growth stage 72 hours post-inoculation, and not with oxidative or temperature stresses.</p
    corecore