144 research outputs found

    Reductive and Oxidative DNA Damage by Photoactive Platinum(II) Intercalators

    Get PDF
    Several photoactive platinum R-diimine intercalators have been prepared to develop new probes of DNA oxidation and reduction chemistry. Five water-soluble bis(mes')Pt(II) complexes (mes') N,N,N,3,5-pentamethylaniline) with various aromatic α-diimine ligands (dppz= dipyridophenazine, np = naphtha[2,3-f][1,ω]phenanthroline, CN-np = naphtho[2,3-f][1,10]phenanthroline-9-carbonitrile, CN_2-np = naphtho[2,3-f][1,10]phenanthroline-9,14-dicarbonitrile, and bp = benzo-[f][1,10]phenanthroline) were synthesized. The complex [(np)Pt(mes')_2]Cl_2 was also characterized by X-ray crystallography, and the crystal structure shows that the ortho-methyl groups of the mes' ligands conveniently block substitution at the vacant sites of platinum without overlapping with the intercalating α-diimine ligand. The Pt(II) complexes were found to have excited-state oxidation and reduction potentials of -0.6 to -1.0 and 1.0 to 1.5 V versus NHE, respectively, making them potent photoreductants as well as photooxidants. Many of the complexes are found to promote the photooxidation of N^2-cyclopropyldeoxyguanosine (d^(Cp)G). Photoexcited [(dppz)Pt(mes')_2]^(2+) is found to be most efficient in this photooxidation, as well as in the photoreduction of N^4-cyclopropylcytidine (^(Cp)C); these modified nucleosides rapidly decompose in a ring-opening reaction upon oxidation or reduction. Photoexcited [(dppz)Pt(mes')_2]Cl_2, upon intercalation into the DNA π stack, is found, in addition, to promote reductive and oxidative damage within the DNA duplex, as is also probed using the kinetically fast electron and hole traps, ^(Cp)C and ^(Cp)G. These Pt complexes may therefore offer useful reactive tools to compare and contrast directly reductive and oxidative chemistry in double helical DNA

    Seasonal influenza vaccine performance and the potential benefits of mRNA vaccines

    Get PDF
    Influenza remains a public health threat, partly due to suboptimal effectiveness of vaccines. One factor impacting vaccine effectiveness is strain mismatch, occurring when vaccines no longer match circulating strains due to antigenic drift or the incorporation of inadvertent (eg, egg-adaptive) mutations during vaccine manufacturing. In this review, we summarize the evidence for antigenic drift of circulating viruses and/or egg-adaptive mutations occurring in vaccine strains during the 2011-2020 influenza seasons. Evidence suggests that antigenic drift led to vaccine mismatch during four seasons and that egg-adaptive mutations caused vaccine mismatch during six seasons. These findings highlight the need for alternative vaccine development platforms. Recently, vaccines based on mRNA technology have demonstrated efficacy against SARS-CoV-2 and respiratory syncytial virus and are under clinical evaluation for seasonal influenza. We discuss the potential for mRNA vaccines to address strain mismatch, as well as new multi-component strategies using the mRNA platform to improve vaccine effectiveness

    Electrochemical ortho functionalization of 2-phenylpyridine with perfluorocarboxylic acids catalyzed by palladium in higher oxidation states

    Get PDF
    The electochemical oxidation of palladium acetate or palladium perfluoroacetate in the presence of 2-phenylpyridine promotes catalytic ortho C-H substitution reactions. As possible intermediates, Pd(II) metallacycles with Pd-bound acetate, perfluoroacetate, and perfluoroheptanoate substituents have been isolated and characterized: binuclear [(PhPy)Pd(μ-OAc)]2 and [(PhPy)Pd(μ-TFA)]2 and mononuclear [(PhPy)Pd(TFA)](CH 3CN), [(PhPy)Pd(TFA)](PhPy), and [(PhPy)Pd(PFH)](PhPy). The fluorinated derivatives were found to exist in solvent-dependent equilibria between mononuclear and binuclear forms. Cyclic voltammetry was used to elucidate redox properties of the palladacycles and the oxidation route to the final products. © 2013 American Chemical Society

    Reductive and Oxidative DNA Damage by Photoactive Platinum(II) Intercalators

    Get PDF

    Evidence for the Existence of a Late-Metal Terminal Sulfido Complex

    No full text

    Versatile Route to Arylated Fluoroalkyl Bromide Building Blocks

    No full text
    New difunctionalized and fluoroalkylated silyl reagents have been prepared that react with silver and copper salts to afford active catalysts that can be used to synthesize arylated fluoroalkyl bromide building blocks. It has been shown that the [(phen)­Ag­(CF<sub>2</sub>)<sub><i>n</i></sub>Br] intermediates are capable of transferring both the phenanthroline ligand and the fluoroalkyl bromide chain to copper iodide, eliminating the need for a preligated copper salt precursor. The methodology is compatible with various chain lengths of the fluoroalkyl halide functionality

    Exploring Mechanisms in Ni Terpyridine Catalyzed C-C Cross-Coupling Reactions-A Review

    No full text
    In recent years, nickel has entered the stage for catalyzed C-C cross-coupling reactions, replacing expensive palladium, and in some cases enabling the use of new substrate classes. Polypyridine ligands have played an important role in this development, and the prototypical tridentate 2,2':6',2 ''-terpyridine (tpy) stands as an excellent example of these ligands. This review summarizes research that has been devoted to exploring the mechanistic details in catalyzed C-C cross-coupling reactions using tpy-based nickel systems
    corecore