Supporting Information

Reductive and Oxidative DNA Damage by Photoactive Platinum(II) Intercalators

Wei Lu, David A. Vicic and Jacqueline K. Barton*

Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125

Supporting Information Available: Scheme depicting the synthesis of the ligand, glassy emission spectra, CIF file and structural parameters of crystal structure of $2 \cdot (DMF)_3 \cdot (H_2O)_2$, additional figures of the UV-vis traces of Pt(II) complexes upon DNA titration and HPLC traces for photoreactions with ^{Cp}C, d^{Cp}G and DNAs. This material is available free of charge via the Internet at <u>http://pubs.acs.org</u>.

Scheme S1 Ligand Synthesis

Figure S1 Emission spectra of complex 1–3 and 5 in 10 M LiCl at 77 K, $\lambda_{ex} =$ 370 nm, concentration ~ 5 × 10⁻⁵ M.

Figure S2 Absorption traces of the titration of a 20-mer DNA into a 20 μ M [(np)Pt(mes')₂]Cl₂ (**2**) in a buffer of 20 mM sodium phosphate and 50 mM NaCl, pH 7.0. Inset: Plot of the absorbance at 370 nm against the amount of DNA added.

Figure S3 Absorption traces of the titration of a 20-mer DNA into a 20 μ M [(CN-np)Pt(mes')₂]Cl₂ (**3**) in a buffer of 20 mM sodium phosphate and 50 mM NaCl, pH 7.0. Inset: Plot of the absorbance at 370 nm against the amount of DNA added.

Figure S4 Absorption traces of the titration of a 20-mer DNA into a 20 μ M [(CN₂-np)Pt(mes')₂]Cl₂ (4) in a buffer of 20 mM sodium phosphate and 50 mM NaCl, pH 7.0.

Figure S5 Absorption traces of the titration of a 20-mer DNA into a 20 μ M [(bp)Pt(mes')₂]Cl₂ (**5**) in a buffer of 20 mM sodium phosphate and 50 mM NaCl, pH 7.0.

Figure S6 Emission traces of the titration of a 20-mer DNA into a 20 μ M [(CN-np)Pt(mes')₂]Cl₂ (**3**) in a buffer of 20 mM sodium phosphate and 50 mM NaCl, pH 7.0.

Figure S7 HPLC traces for photoreaction of ^{Cp}C nucleoside in the presence of $[(CN-np)Pt(mes')2]^{2+}$ complex. Conditions: 30 µL aliquot, 500 µM ^{Cp}C; 500 µM Pt(II) complex; 50 mM NaCl; 20 mM NaP buffer; pH 7.0; 370 nm (~12.5 mW).

Figure S8HPLC traces for photoreaction of ^{Cp}C nucleoside in the presence of $[(np)Pt(mes')2]^{2+}$ complex. Conditions: 30 µL aliquot, 20 µM ^{Cp}C ; 20 µM Pt(II)complex; 50 mM NaCl; 20 mM NaP buffer; pH 7.0; 370 nm (~12.5 mW).

Figure S9 EPR spectra of the mixtures of complex **1** and TEMP. General conditions: 150 μ L aliquot; 20 mM TEMP; 500 μ M [(dppz)Pt(Mes')₂]²⁺; 20 μ M DNA where applicable; 50 mM NaCl; 20 mM NaP buffer; pH 6.99; room temperature; 370 nm (~8 mW) irradiation 10 min where applicable; three freeze-pump-thaw cycles where applicable; X-band EPR spectra were obtained on a Bruker EMX spectrometer equipped with a rectangular cavity working in the TE₁₀₂ mode; EPR parameters: receiver gain = 1×10⁴, modulation amplitude = 2 G, microwave power = 10 mW, 5 scans.

Figure S10 HPLC traces of DNA base damages during the photoreaction of 5 μ M DNA duplex G/C and 50 μ M [(dppz)Pt(mes')₂]²⁺ complex in buffer in the presence of O₂.

Figure S11 HPLC traces of DNA base damages during the photoreaction of 5 μ M DNA duplex G/^{Cp}C and 50 μ M [(dppz)Pt(mes')₂]²⁺ complex in buffer in the presence of O₂.

Figure S12 HPLC traces of DNA base damages during the photoreaction of 5 μ M DNA duplex ^{Cp}G/^{Cp}C and 50 μ M [(dppz)Pt(mes')₂]²⁺ complex in buffer in the presence of O₂.

Figure S13 HPLC traces of DNA base damages during the photoreaction of 5 μ M DNA duplex ^{Cp}G/^{Cp}C and 50 μ M [(dppz)Pt(mes')₂]²⁺ complex in D₂O in the presence of O₂.

Figure S14 HPLC traces of DNA base damages during the photoreaction of 5 μ M DNA duplex ^{Cp}G/^{Cp}C and 50 μ M [(dppz)Pt(mes')₂]²⁺ complex in buffer in the absence of O₂.

Figure S15 HPLC traces of DNA base damages during the photoreaction of 5 μ M DNA duplex G/^{Cp}C and 5 μ M [(dppz)Pt(mes')₂]²⁺ complex in buffer in the presence of O₂.

Figure S16 HPLC traces of DNA base damages during the photoreaction of 5 μ M DNA duplex $I/^{Cp}C$ and 5 μ M [(dppz)Pt(mes')₂]²⁺ complex in buffer in the presence of O₂.

Figure S17 HPLC traces of DNA base damages during the photoreaction of 5 μ M DNA duplex ${}^{Cp}G/{}^{Cp}C$ and 5 μ M [(dppz)Pt(mes')₂]²⁺ complex in buffer in the presence of O₂.

Figure S18 HPLC traces of DNA base damages during the photoreaction of 5 μ M DNA duplex ^{Cp}G/C and 5 μ M [(dppz)Pt(mes')₂]²⁺ complex in buffer in the presence of O₂.

Figure S19 Percent nucleoside remaining after photoreaction of 5 μ M [(bp)Pt(mes')₂]Cl₂ (**5**) and 5 μ M duplex ^{Cp}G/^{Cp}C in the presence of O₂, and after nuclease digestion and HPLC analysis. For HPLC quantitation, T was used as internal standard.

Figure S20 Percent nucleoside remaining after photoreaction of 50 μ M [(bp)Pt(mes')₂]Cl₂ (**5**) and 5 μ M duplex ^{Cp}G/^{Cp}C in the presence of O₂, and after nuclease digestion and HPLC analysis. For HPLC quantitation, T was used as internal standard.

Figure S21 Percent nucleoside remaining after photoreaction of 50 μ M [(bp)Pt(mes')₂]Cl₂ (**5**) and 5 μ M duplex ^{Cp}G/C in the presence of O₂, and after nuclease digestion and HPLC analysis. For HPLC quantitation, T was used as internal standard.

Figure S22 Percent nucleoside remaining after photoreaction of 50 μ M [(bp)Pt(mes')₂]Cl₂ (**5**) and 5 μ M duplex **G**/^{Cp}**C** in the presence of O₂, and after nuclease digestion and HPLC analysis. For HPLC quantitation, T was used as internal standard.