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REVIEW

Seasonal influenza vaccine performance and the potential benefits of mRNA vaccines
Colin A. Russella, Ron A. M. Fouchierb, Parinaz Ghaswallac, Yoonyoung Parkc, Nevena Vicicc, Jintanat Ananworanichc, 
Raffael Nachbagauerc, and Deborah Rudin c

aDepartment of Medical Microbiology & Infection Prevention, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, the 
Netherlands; bDepartment of Viroscience, Erasmus Medical Center, Rotterdam, the Netherlands; cModerna, Inc., Cambridge, MA, USA

ABSTRACT
Influenza remains a public health threat, partly due to suboptimal effectiveness of vaccines. One factor 
impacting vaccine effectiveness is strain mismatch, occurring when vaccines no longer match circulating 
strains due to antigenic drift or the incorporation of inadvertent (eg, egg-adaptive) mutations during 
vaccine manufacturing. In this review, we summarize the evidence for antigenic drift of circulating viruses 
and/or egg-adaptive mutations occurring in vaccine strains during the 2011–2020 influenza seasons. 
Evidence suggests that antigenic drift led to vaccine mismatch during four seasons and that egg-adaptive 
mutations caused vaccine mismatch during six seasons. These findings highlight the need for alternative 
vaccine development platforms. Recently, vaccines based on mRNA technology have demonstrated 
efficacy against SARS-CoV-2 and respiratory syncytial virus and are under clinical evaluation for seasonal 
influenza. We discuss the potential for mRNA vaccines to address strain mismatch, as well as new multi- 
component strategies using the mRNA platform to improve vaccine effectiveness.
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Introduction

Influenza, a vaccine-preventable disease,1 remains a considerable 
public health threat, with approximately 1 billion cases and 
3.2 million hospitalizations occurring globally each year.2,3 

Between 1999 and 2015, an estimated 291,000 to 646,000 (median 
409,000) annual respiratory deaths among people of all ages were 
associated with influenza virus infection globally.4 In the United 
States alone during the 2019–2020 season, there were an estimated 
35 million individuals with symptomatic illness, 389,000 hospita-
lizations, and 25,000 deaths related to influenza virus infection.5 

Although influenza is a concern for all age groups, influenza- 
associated respiratory deaths occur disproportionately among 
individuals aged ≥75 years, accounting for 41% of all influenza- 
associated respiratory deaths globally.4

There are four influenza virus types, but only types A and 
B cause seasonal epidemics in humans, experienced mainly dur-
ing the winter season in temperate geographic regions.2 Between 
2009 and 2020, the predominant circulating influenza viruses in 
humans were two subtypes of the influenza A virus, A/H1N1 
(derived from the 2009 pandemic virus [pdm09]) and A/H3N2, 
and two lineages of the influenza B virus, Victoria and Yamagata.6 

Notably, B/Yamagata has not been isolated or sequenced since 
March 2020 (from the onset of the COVID-19 pandemic).7,8 In 
the United States, influenza A/H3N2 has accounted for the most 
influenza-attributable respiratory deaths (between 1999 and 
2018) and hospitalizations (between 1997 and 2009) among peo-
ple of all ages, followed by influenza B, with A/H1N1 attributed to 
the least number of these medical events.9,10

Influenza vaccines are available and updated annually based 
on circulating influenza virus activity, which is monitored by 

the World Health Organization (WHO) Global Influenza 
Surveillance and Response System (GISRS) to recommend 
trivalent (A/H1N1 and A/H3N2 along with one lineage of 
influenza B) or quadrivalent (A/H1N1, A/H3N2, B/Victoria, 
and B/Yamagata) seasonal influenza vaccine compositions for 
Northern Hemisphere and Southern Hemisphere seasons 
each year.2 While most influenza vaccines are manufactured 
using an egg-based platform, vaccines using cell culture- and 
recombinant protein-based platforms are also available.11 

Vaccination remains a valuable means of mitigating the public 
health threat of influenza, but vaccine effectiveness (VE) 
between 2004 and 2015 was low to moderate against seasonal 
influenza globally, particularly for A/H3N2 (pooled VE 33%) 
relative to A/H1N1 (pooled VE 61% for pdm09; pooled VE 
67% for pre-2009) and type B viruses (pooled VE 54%).12

Several factors may contribute to the low VE of currently 
available influenza vaccines,13 including virus- and host- 
specific factors. Among virus-specific factors, antigenic drift 
is a key characteristic of influenza viruses that enables circulat-
ing viruses to evade immune detection via accumulation of 
amino acid substitutions in hemagglutinin (HA) and neura-
minidase (NA), the major surface glycoproteins of influenza 
viruses.6 A/H3N2 HA antigenic drift is particularly prevalent, 
with approximately 5-fold higher rates relative to B/Victoria, 
7-fold higher than B/Yamagata, and 18-fold higher than 
A/H1N1 (since 2009).13,14 A key challenge specific to current 
egg- and cell culture-based vaccine platforms is the approximate 
6-month production time after initial vaccine composition 
recommendations, allowing time for an antigenically divergent 
clade to predominate and potentially cause mismatch to vaccine 
strain compositions.1 Moreover, influenza viruses have acquired 
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additional characteristics that aid immune evasion such as glycan 
modifications at specific amino acid motifs. Glycosylation pat-
terns in the HA globular head may shield the antigenic-binding 
sites preventing antibody recognition and binding.13 Increased 
glycosylation is suggested to be a key contributor to low VE, 
particularly against A/H3N2 strains that have over time acquired 
multiple glycosylation sites in the HA head.13 Egg-based vaccines 
have the potential for inadvertent incorporation of egg-adapted 
mutations during vaccine production that can possibly impact 
antigenic properties by causing a mismatch of the vaccine strain 
to circulating virus strains.1,15 Notably, egg-adapted vaccine 
strains lacking the glycosylation sites found in circulating viruses 
due to site mutations during egg-propagation have also been 
suggested to contribute to lower VE.13,16

Vaccine effectiveness is also affected by host-related factors, 
such as within-season waning of vaccine-mediated 
protection,13,17 previous vaccinations affecting subsequent vac-
cine responses,13,18 and suboptimal immune responses to current 
vaccine platforms in immunocompromised individuals and older 
adults (immunosenescence).19,20 For example, a systematic review 
and meta-analysis of influenza VE data from test-negative design 
studies published between 2004 and 2015 showed that VE against 
A/H3N2 decreased with older age.12 For A/H3N2, VE ranged 
from 43% in those aged <20 years, 35% in adults aged 20–64  
years, and 24% in adults aged ≥60 years.12 Adjuvanted and higher 
antigenic-dose influenza vaccines are preferable to conventional 
standard-dose vaccines to boost VE in older adults.21–23

Understanding the factors that impact influenza VE is impor-
tant for determining current challenges and optimizing vaccina-
tion strategies. In this review, we summarize the published 
literature (PubMed) reporting on Northern Hemisphere seasons 
with documented instances of antigenic drift and egg-adapted 
mutations leading to strain mismatch, potentially impacting VE 
between 2011 and 2020. Based on these findings, we highlight the 
challenges current vaccine platforms face against strain mismatch 
and discuss the potential for alternative vaccine platforms to 
address these limitations. In particular, we focus on messenger 
RNA (mRNA) technology, which has demonstrated its potential 
against respiratory disease as exemplified by vaccines against 
SARS-CoV-2 (the virus causing COVID-19) and respiratory 
syncytial virus, the latter of which received breakthrough therapy 
designation by the United States Food and Drug Administration 
(FDA) in January 2023. We discuss how an mRNA-based vaccine 
platform can address the specific limitations of current seasonal 
influenza vaccines associated with strain mismatch due to anti-
genic drift and egg-adapted mutations. For further details on the 
mRNA platform, we refer the reader to comprehensive reviews 
on such matters.24–26

Antigenic drift or egg-adapted mutations and potential 
impact on influenza VE during the 2011–2020 seasons

Antigenic drift
Our literature search identified five studies that reported evi-
dence of antigenic drift potentially impacting influenza VE for 
four seasons: 2011–2012, 2014–2015, 2018–2019, and 2019– 
2020.27–31 Table 1 summarizes the key findings of the literature 
search, and Table S1 provides a summary on the designs of 
each identified study.

2011–2012 influenza season

In Canada, the 2011–2012 influenza season was characterized by 
co-circulating influenza A subtypes and B lineages (Figure 1), 
for which VE was found to be favorable against well-matched A/ 
H1N1 (80%) and B lineages (71%) but suboptimal against A/ 
H3N2 (51%).27 Circulating A/H3N2 isolates for this season were 
similar to the 2011–2012 vaccine component (A/Perth/16/ 
2009), although hemagglutination inhibition (HAI) titers were 
reduced ≥4-fold in 27% of tested isolates.27 A subset of A/H3N2 
viruses were sequenced for phylogenetic analysis, which deter-
mined that none of the sentinel viruses belonged to the A/Perth/ 
16/2009 vaccine clade, with the majority (72%) belonging to 
clade 3B, followed by clade 3C, clade 6, and clade 5 – all of these 
clades are substantially diverged from A/Perth/16/2009.27 This 
substantial genetic variation was identified as a potential con-
tributor to the low VE observed in Canada for the 2011–2012 
season (Table 1).27 In the United States and Europe, strain- 
specific VE against A/H3N2 (the most prevalent strain that 
season)59,75 was estimated to be 39% for the 2011–2012 season 
in the United States84 and 38% in Europe during the start of the 
influenza season (from week 46 of 2011 to week 6 of 2012) that 
was reduced to -1% later in the season (weeks 7 to 17 of 2012).50

2014–2015 influenza season

Antigenic drift of A/H3N2 was also detected early in the 2014– 
2015 influenza season.28,29 In the United States, A/H3N2 
predominated the 2014–2015 season60 and overall VE against 
A/H3N2 for the season was estimated to be 6%.85 While the 
vaccine-included strain for this season belonged to clade 3C.1  
HA genetic clade (A/Texas/50/2012), predominant circulating 
viruses in the United States instead belonged to an emergent, 
substantially drifted clade 3C.2a.28,29 Based on Flu VE Network 
sites in the United States, low VE against the 3C.2a clade (1%) 
during this season was consistent with antigenic drift.29 Further, 
a study using reverse genetics determined that mutations in HA 
antigenic site B were the primary antigenic contributor to the 
low VE for this season (Table 1).

2018–2019 influenza season

The 2018–2019 influenza season was also marked by antigenic 
drift early in the season, with HA in circulating A/H3N2 
viruses in the United States quickly and increasingly represent-
ing clade 3C.3a rather than clade 3C.2a1 of the vaccine com-
ponent (A/Singapore/INFIMH-16–0019/2016 [Table 1]).30 

However, the newly circulating 3C.3a viruses were antigeni-
cally distinct from previously circulating 3C.3a viruses, 
such as those targeted by the 2015–2016 vaccine component 
A/Switzerland/9715293/2013.32 Of note, while A/H1N1 was 
the predominant strain in the United States (~54%) for this 
season, A/H3N2 accounted for a large proportion (~42%) of 
influenza virus infections.61 VE against A/H3N2 was estimated 
at 9% for this season in the United States,86 while VE by 
genetic subgroup was 46% for 3C.2a1 (vaccine matched 
clade) and 5% for 3C.3a (predominant, mismatched circulat-
ing clade).30
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Table 1. Northern Hemisphere vaccine composition and reports of antigenic drift or egg-adapted mutations in the literature analysis of Northern Hemisphere 
2011–2020 influenza seasons.

Season 
(Northern 
Hemisphere)

WHO-recommended 
vaccine composition for the 
Northern Hemisphere32–41

Articles reporting evidence of antigenic drift 
and the potential impact on VE in the Northern 

Hemisphere

Articles reporting evidence of egg-adapted 
mutations and the potential impact on VE in the 

Northern Hemisphere

2011–2012 A/H1N1 A/California/7/2009 Antigenic drift of A/H3N2 as the season 
progressed. 

WHO recommended that the 2012–2013 
Northern Hemisphere vaccine composition 
be updated to include the A/Victoria/361/ 
2011 (H3N2)-like virus38

Six antigenic-site mutations (S45N, G186V, 
S214I, S228T, I260M, R261Q) from the 
reference strain were identified in the egg- 
passaged vaccine strain for A/H3N2, but 
whether this affected HAI titers against 
circulating strains was not assessed27

A/H3N2 A/Perth/16/2009
B/Victoria B/Brisbane/60/2008
B/Yamagata Not applicable

2012–2013 A/H1N1 A/California/7/2009 Egg-adapted mutations were identified in the 
A/H3N2 vaccine strain (H156Q and G186V 
substitutions at antigenic site B, and S219Y 
mutation at antigenic site D), which reduced 
HAI titers to the WHO-recommended strain42 

Recommendation that A/Texas/50/2012 be 
used in the 2013–2014 Northern Hemisphere 
vaccine composition due to egg-adapted 
mutations (H156Q, G186V, S219Y) in earlier 
A/Victoria/361/2011-like vaccine viruses33

A/H3N2 A/Victoria/361/2011
B/Victoria B/Brisbane/60/2008  

(if quadrivalent)
B/Yamagata B/Wisconsin/1/2010

2013–2014 A/H1N1 A/California/7/2009
A/H3N2 A/Texas/50/2012
B/Victoria B/Brisbane/60/2008  

(if quadrivalent)
B/Yamagata B/Massachusetts/2/2012

2014–2015 A/H1N1 A/California/7/2009 Reduced VE caused by antigenic drift of A/H3N2 
virus: 3C.2a, 3C.3, and 3C.3a HA clades 
predominated, leading to mismatch with the 
H3N2 component of the vaccine (A/Texas/50/ 
2012; 3C.1 HA clade); due to multiple mutations 
in the HA antigenic site B including F159S28,29 

WHO recommended that the 2015–2016 vaccine 
be updated to include A/Switzerland/9715293/ 
201340

A/H3N2 A/Texas/50/2012
B/Victoria B/Brisbane/60/2008  

(if quadrivalent)
B/Yamagata B/Massachusetts/2/2012

2015–2016 A/H1N1 A/California/7/2009 Single egg-adapted HA receptor binding site 
mutation (Q226R) in A/H1N1 viral strain (A/ 
California/7/2009-X-179A), which in ~ 5% of 
vaccine recipients reduced antibody titers 
against wild-type HA43 

Single egg-adapted substitution on HA (L194P) 
in A/H3N2 viral strain affecting the structural 
conformation of antigenic site B and leading 
to decreased neutralizing antibody binding44

A/H3N2 A/Switzerland/9715293/ 
2013

B/Victoria B/Brisbane/60/2008  
(if quadrivalent)

B/Yamagata B/Phuket/3073/2013

2016–2017 A/H1N1 A/California/7/2009 Egg-adapted substitution (T160K) in HA 
antigenic site B of A/H3N2 virus causing loss 
of putative N-glycosylation site, which 
resulted in reduced antibody titers against 
circulating viruses16,45

A/H3N2 A/Hong Kong/4801/2014
B/Victoria B/Brisbane/60/2008
B/Yamagata B/Phuket/3073/2013  

(if quadrivalent)
2017–2018 A/H1N1 A/Michigan/45/2015 Egg-adapted substitution (T160K) in antigenic 

site B of A/H3N2 virus may have contributed 
to low VE observed, which is attributed to loss 
of putative N-glycosylation site45 

A study of hospitalized adults with infections 
from this season suggests that antibody 
responses among vaccinated individuals were 
specific to egg adaptations in the A/H3N2 
vaccine strain that were not conserved in 
circulating strains including T160K and L194P 
(antigenic site B) and N96S (antigenic site D)46

A/H3N2 A/Hong Kong/4801/2014
B/Victoria B/Brisbane/60/2008
B/Yamagata B/Phuket/3073/2013  

(if quadrivalent)

2018–2019 A/H1N1 A/Michigan/45/2015 Antigenic drift of the A/H3N2 virus: 3C.3a HA 
clades predominated, leading to mismatch 
with the H3N2 component of the vaccine (A/ 
Singapore/INFIMH-16–0019/2016; 3C.2a1 HA 
clade)30 

WHO recommended that the 2019–2020 
vaccine be updated to include A/Kansas/14/ 
2017 (clade 3C.3a)30,36

Egg-adapted mutations (T160K, L194P, and 
D225G) identified in the HA head of the A/ 
H3N2 viral strain47 

Antibodies collected from vaccinated 
individuals showed reduced neutralizing 
responses against the wild-type A/H3N2 virus 
versus the egg-propagated vaccine virus, 
which was likely attributed to the 
combination of 3 egg-adapted mutations in 
the HA head (T160K, L194P, and D225G)47

A/H3N2 A/Singapore/INFIMH-16- 
0019/2016

B/Victoria B/Colorado/06/2017 (B/ 
Victoria/2/87 lineage)

B/Yamagata B/Phuket/3073/2013 (B/ 
Yamagata/16/88 lineage) 
(if quadrivalent)

(Continued)
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2019–2020 influenza season

During the 2019–2020 season in the United States, B/Victoria 
viruses predominated earlier in the season, but ultimately A/ 
H1N1 became the most predominant strain for that season.62 

Antigenic drift of A/H1N1 was documented to occur over the 
course of the influenza season in the United States, with the 
majority of circulating strains belonging to the phylogenetic 
subclade 6B.1A 183P-5A +156K that mismatched with clade 
6B.1A of the vaccine component (A/Brisbane/02/2018 
[Table 1]).31 VE against A/H1N1 for this season was reported 
to be 30% in the United States,87 which was lower than typical 
seasons.31 Furthermore, VE was only 7% against the group of 
A/H1N1 viruses that were predominantly circulating later in 
the season (183P-5A +156K).31 Antigenically drifted B/ 
Victoria also circulated throughout the 2019–2020 season in 
the United States, with circulating viruses belonging to clade 
V1A.3 rather than clade V1A.1 of the vaccine component (B/ 
Colorado/06/2017); however, these antigenic differences were 
not linked to a reduction in VE, with the authors concluding 
that this was possibly due to vaccination-mediated cross- 
reactivity to V1A.3 that provided protection against disease.31 

VE against B/Victoria for this season was 45%.31

Egg-adapted mutations
Evidence of egg-adapted mutations in a seasonal influenza 
vaccine component was reported by eight studies (study designs 
are summarized in Table S1) for six seasons: in the A/H3N2 
vaccine component for the 2011–2012, 2012–2013, 2015–2016, 
2016–2017, 2017–2018, and 2018–2019 seasons,16,27,42,44-47 and 
for the A/H1N1 vaccine component in the 2015–2016 season 
(evidence is summarized in Table 1).43

2011–2012 influenza season

For the 2011–2012 influenza season, when A/H3N2 was pre-
dominant in the United States (Figure 1),59 A/Perth/16/2009 

was the recommended vaccine component, and manufacturers 
used the egg-passaged strain A/Victoria/210/2009-NYMC 
X-187 for the vaccine.27 Although X-187 was initially consid-
ered antigenically equivalent to A/Perth/16/2009, 
a phylogenetic analysis showed it to have six antigenic-site 
mutations (Table 1).88 As stated previously, this season was 
also notable for detectable antigenic drift of A/H3N2 occurring 
during this season that impacted VE in Canada.

2012–2013 influenza season

An egg-adapted mutation of the A/H3N2 vaccine component was 
also detected for the 2012–2013 season.42 An in-depth sequencing 
analysis identified three mutations in antigenic sites B and D in the 
egg-passaged component that reduced HAI titers by 16-fold rela-
tive to a cell-passaged comparator and by 32-fold relative to the 
WHO-recommended strain.42 VE against A/H3N2 in Canada for 
this season was estimated to be 41%, and low VE was concluded to 
be related to mutations in the egg-adapted A/H3N2 strain used in 
vaccine production rather than antigenic drift in circulating 
viruses (Table 1).42 In the United States, A/H3N2 also predomi-
nated during the 2012–2013 season and VE against A/H3N2 was 
39%.63,89 In Europe, the 2012–2013 influenza season was charac-
terized by co-circulating influenza A subtypes and B lineages, with 
VE against A/H3N2 of 42%.51,76 The WHO recommended that 
A/Texas/50/2012 be used for the following Northern Hemisphere 
season (2013–2014) due to egg-adapted mutations in the 
A/Victoria/361/2011-like vaccine viruses.33 However, it remains 
notable that a later study in 2018 found that low VE might not be 
solely attributable to this egg-adapted mutation, but also poten-
tially due to varied immunological responses to the influenza 
vaccine due to prior exposure.90

2015–2016 influenza season

Two studies also reported on egg-adapted mutations in either 
the A/H1N1 or A/H3N2 strains during the 2015–2016 

Table 1. (Continued).

Season 
(Northern 
Hemisphere)

WHO-recommended 
vaccine composition for the 
Northern Hemisphere32–41

Articles reporting evidence of antigenic drift 
and the potential impact on VE in the Northern 

Hemisphere

Articles reporting evidence of egg-adapted 
mutations and the potential impact on VE in the 

Northern Hemisphere

2019–2020 A/H1N1 A/Brisbane/02/2018 Antigenically drifted A/H1N1 emerged over the 
course of the season; early in the season, 
clade 6B.1.A (which includes the vaccine 
strain) subclade 5A viruses genetically 
diversified and exhibited substitutions at 
D187A and Q189E in HA31; further amino acid 
changes (K130N, N156K, L161I, V250A, and 
E506D; termed 5A + 156K viruses) occurred 
and predominated by mid-season31 

Genetic diversification in circulating A/H1N1 
may have contributed to reduced VE, 
particularly for 6B.1A 5A + 156K viruses31 

Antigenically drifted B/Victoria circulated 
throughout the season (V1A.3, containing 
a 3-amino acid deletion [162–164] in the HA 
protein, as opposed to a 2 amino-acid 
deletion [162–163] for V1A.1 in the vaccine), 
but this was not linked to a reduction in VE, 
possibly due to some cross-reactivity31

A/H3N2 A/Kansas/14/2017
B/Victoria B/Colorado/06/2017 (B/ 

Victoria/2/87 lineage)
B/Yamagata B/Phuket/3073/2013 (B/ 

Yamagata/16/88 lineage) 
(if quadrivalent)

HA hemagglutinin; HAI hemagglutination inhibition; VE vaccine effectiveness; WHO World Health Organization. 
For context, the findings of the targeted literature review are presented alongside the recommended vaccine compositions for each influenza season provided by the 

World Health Organization.32-41
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season.43,44 Among US-based vaccine recipients for the 2015– 
2016 season (during which influenza was largely caused by A/ 
H1N164 and VE against A/H1N1 for that season was 45%),91 

approximately 5% of recipients possessed HAI titers that 
were ≥4-fold higher to the egg-adapted A/H1N1 strain (A/ 
California/7/2009-X-179A; candidate vaccine virus compo-
nent of the 2015–2016 influenza vaccine) than the circulating 
strain (Table 1).43 In a separate study, a commonly found egg- 
adapted mutation (L194P) in the A/H3N2 viral strain was 
found to affect the antigenic properties of the A/H3N2 vaccine 
component for the 2015–2016 season (A/Switzerland/ 
9715293/2013).44 This mutation affected the conformation of 
antigenic site B to disrupt a large portion of the RBS, leading to 
decreased neutralizing antibody binding (Table 1).44 As anti-
genic site B was immunodominant in A/H3N2 viruses, the 
authors concluded this mutation was likely to have profound 
implications for VE.44 However, infections with A/H3N2 in 
the United States were uncommon for this season.91

2016–2017 and 2017–2018 influenza seasons

A/HongKong/4801/2014 was the WHO-recommended A/ 
H3N2 vaccine strain for both the 2016–2017 and 2017–2018 
influenza seasons.34,35 During these two seasons, the circulat-
ing A/H3N2 viruses were antigenically equivalent to the 
WHO-recommended prototype.16 However, an egg-adapted 
mutation in antigenic site B of the vaccine strain used for 
both seasons may have lowered VE (Table 1).16,45 A/H3N2 

was predominant in the United States for both these 
seasons,65,66 and VE against A/H3N2 was estimated to be 
33% in 2016–2017 and 22% in 2017–2018 seasons.92 For the 
2016–2017 season, the egg-propagated vaccine was found to 
elicit antibody responses that poorly neutralized the circulat-
ing H3N2 virus strains, which contained an antigenic site 
B glycosylation site that was lacking in the egg-adapted vaccine 
strain.16 An analysis of hospitalized adults with A/H3N2 virus 
infections during the 2017–2018 season demonstrated that 
antibody responses were specific to egg adaptations in the A/ 
H3N2 vaccine strain that were not found in circulating strains 
(Table 1).46 Titers against wild-type A/H3N2 strains (3C.2a1 
and 3C2a2) were significantly correlated with protection 
against infection during the 2017–2018 season.46

2018–2019 influenza season

For the 2018–2019 season, three egg-adapted mutations were 
identified in the HA head of the A/H3N2 vaccine component 
(A/Singapore/INFIMH-16–0019/2016).47 Antibodies collected 
from vaccinated individuals showed reduced neutralizing 
responses against the cell-propagated wild-type A/H3N2 
virus versus the egg-propagated vaccine virus, likely due to 
the antibodies targeting egg-adapted epitopes.47 As stated pre-
viously, antigenic drift of A/H3N2 was also detected during 
this season, and an update to the following Northern 
Hemisphere season’s vaccine composition for A/H3N2 was 
recommended by the WHO to address antigenic drift.30,36

Figure 1. Influenza vaccine effectiveness, vaccine match, and strain prevalence by Northern Hemisphere influenza season and geographic region. Vaccine effectiveness 
estimates were based on information from the United States Centers for Disease Control and Prevention (CDC),48 the Canadian Sentinel Practitioner Surveillance 
Network,49 and I-MOVE (Influenza – Monitoring Vaccine Effectiveness in Europe; European Union primary care-based, multi-country cohort).50–58 Overall vaccine 
effectiveness (across strains) is presented for the United States and Canada. Vaccine effectiveness for the predominant strain each season is presented for Europe. 
Dotted line represents the overall percentage of antigenic match of the vaccine to circulating viruses in the United States, calculated as a sum of the antigenic match 
values for each of the four strains weighted by their relative prevalence during the season. Antigenic match values were published in the CDC’s Morbidity and Mortality 
Weekly Reports and were based on titers with ferret antisera,59–68 Strain prevalence estimates were based on CDC’s Morbidity and Mortality Weekly Report,59–67 the 
Canadian Sentinel Practitioner Surveillance Network,27,42,69–74 and the European Centre for Disease Prevention and Control.75–83 The proportion of unknown influenza 
A or influenza B lineages is not shown.
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Potential for mRNA technology to address strain 
mismatch challenges for influenza vaccines

During the 2011–2020 influenza seasons, antigenic drift caus-
ing vaccine mismatch to circulating strains was identified in 
four seasons, and evidence of egg-adapted mutations in vac-
cine strains was identified in six seasons. Overall, these find-
ings emphasize the specific challenges of influenza vaccine 
development and the need for alternative vaccine approaches 
to increase protection against disease. One such alternative 
platform is mRNA technology. There are already multiple 
mRNA vaccines against seasonal influenza currently under 
clinical development by various manufacturers, with two vac-
cines having progressed to phase 3 evaluations. Of these, 
Moderna, Inc.’s investigational quadrivalent seasonal influ-
enza vaccine, mRNA-1010, has shown an acceptable safety 
profile and was immunogenic in both younger and older 
adults across phase 1/2 and phase 3 studies (Clinicaltrials. 
gov, NCT04956575, NCT05415462, NCT05566639, 
NCT05827978).93,94 Phase 3 evaluations of Pfizer, Inc.’s 
mRNA seasonal influenza vaccine candidate are also underway 
(Clinicaltrials.gov, NCT05540522).95 As previously men-
tioned, future iterations of mRNA seasonal influenza vaccines 
are also in clinical development, including vaccine candidates 
with additional HA antigens for broader coverage, as well as 
candidates that incorporate mRNA encoding for both HA and 
NA. Moreover, mRNA vaccines have recently demonstrated 
an acceptable safety profile and efficacy against other respira-
tory diseases, notably SARS-CoV-296 and respiratory syncytial 
virus.97 Below, we discuss the specific potential of mRNA 
technology for seasonal influenza and mRNA vaccines cur-
rently in clinical development.

Rapid, scalable manufacturing process
A major advantage of mRNA technology for seasonal influ-
enza is that the platform does not rely on a continuous egg 
supply for vaccine manufacturing.15 Currently, egg- and cell- 
based technologies require approximately 6 months for vac-
cine manufacturing,98 beginning after WHO releases the 
recommended vaccine composition in February and 
September ahead of the forthcoming Northern Hemisphere 
and Southern Hemisphere influenza seasons, respectively 
(Figure 2).32 By comparison, mRNA vaccines follow 
a simplified and highly reproducible manufacturing process 
that utilizes the same raw materials regardless of the encoded 
antigens.96 For SARS-CoV-2, updated recommendations for 
variant-containing COVID-19 vaccines were made by the FDA 
in June 2022, with the updated mRNA vaccines made available 
in September 2022, suggesting an mRNA vaccine manufactur-
ing timeline of 2–3 months,99,100 which could be applicable to 
seasonal influenza as well. This could possibly allow for strain 
selection closer to the start of the influenza season to decrease 
the risk of a mismatch due to before-season antigenic drift99 if 
recommended by WHO and other public health recommend-
ing bodies based on their assessment of risks/benefits. Further, 
the flexibility and speed of the mRNA platform would likely be 
advantageous in the event of an emergent pandemic influenza 
strain, whereby a coordinated effort across multiple stake-
holders would be warranted to develop and deploy mRNA 

vaccines targeting this strain, as observed during the 
COVID-19 pandemic.

The manufacturing process for mRNA vaccines is also 
scalable, which was integral in the context of the rapidly 
emerging SARS-CoV-2 behind the COVID-19 pandemic.101 

In addition, mRNA technology is flexible and can adapt to an 
evolving pathogen over time,101 as underscored by the devel-
opment and authorization of new variant-updated mRNA 
vaccines formulated to address emergent SARS-CoV-2 
variants.102,103

Multi-component vaccine compositions
Another advantage of mRNA technology over current designs 
is that it allows for generation of difficult-to-manufacture 
protein complexes and flexibility in antigenic composition.96 

These elements may enable an mRNA-based vaccine to 
broaden protection against influenza viruses. So far, HA 
from each of the four seasonal influenza viruses has been the 
main antigenic component of quadrivalent seasonal influenza 
vaccines.1 mRNA technology can allow for inclusion of more 
than four HA antigens in a single vaccine, which may allow 
public health agencies to expand their recommendations for 
current quadrivalent vaccine compositions, which could allow 
for regionalization beyond broad Northern and Southern 
Hemisphere compositions. Possibilities also include targeting 
multiple clades/sub-clades of each seasonal influenza virus and 
targeting antigens beyond HA. Two mRNA vaccine candidates 
undergoing clinical evaluation (mRNA-1011 and mRNA- 
1012) include additional HA antigens for influenza 
A (Clinicaltrials.gov, NCT05827068). Another mRNA-based 
formulation incorporates all 20 of the known HA subtypes of 
influenza A and B viruses that have the potential to enter the 
human population and has demonstrated strain-specific 
immune responses against each HA subtype in a preclinical 
study.101,104 While this study provides proof of concept of the 
potential of multivalent mRNA vaccines, further study is 
required to determine the value of an influenza vaccine target-
ing non-circulating strains in humans. The mRNA platform 
also allows for the addition of other antigens besides HA in 
a single vaccine to potentially broaden protection against sea-
sonal influenza. NA is one such antigen under clinical con-
sideration, as individuals infected with influenza A or B viruses 
generate inhibitory antibodies against both surface glycopro-
teins HA and NA, which facilitate viral entry and viral release 
from host cells, respectively.1,6 Anti-NA immunity has pre-
viously been shown to reduce influenza virus infection- 
associated illness in an independent manner from HA-based 
immunity.105,106 The genetic evolution of NA appears to be 
discordant from HA,107,108 and vaccines targeting both pro-
teins may limit the ability of the virus to escape immune 
responses through antigenic drift. mRNA influenza vaccines 
targeting both HA and NA are currently in clinical develop-
ment (mRNA-1020 and mRNA-1030, Clinicaltrials.gov, 
NCT05333289),109 along with an mRNA vaccine targeting 
only NA (Sanofi).

Beyond vaccines targeting only influenza, the flexibility of 
this platform provides the capability to develop combination 
vaccines against multiple respiratory pathogens96; multi- 
component mRNA-based seasonal influenza vaccines currently 
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undergoing clinical investigation are targeting both influenza 
and SARS-CoV-2 (mRNA-1073, Clinicaltrials.gov, 
NCT05375838; mRNA-1083, Clinicaltrials.gov NCT05827926; 
qIRV plus bivalent BNT162b2, Clinicaltrials.gov, 
NCT05596734), as well as influenza, SARS-CoV-2, and RSV 
(mRNA-1230, Clinicaltrials.gov, NCT05585632).

Avoidance of egg- and cell-adapted mutations
In bypassing the egg and cell culture propagation process, 
mRNA vaccines could potentially show improved VE by avoid-
ing mutations in vaccine-produced strains that cause antigenic 
mismatch to circulating viruses. The scale of potential ineffi-
ciencies of traditional egg-based manufacturing technology has 
been acknowledged in a Delphi-style panel interview of nine 
influenza experts.110 Based on the European data from 2014 to 
2019, these experts estimated VE could potentially increase by 
9% (against all influenza strains) and up to 16% (against A/ 
H3N2 in the 18–64-year age range) if egg adaptations that arise 
when employing the traditional egg-based manufacturing pro-
cess are avoided.110 Beyond the season of vaccine administra-
tion, the presence of egg-adapted mutations in vaccines can 
have long-term implications due to immune imprinting at the 
time of first exposure to influenza in childhood, which influ-
ences antibody responses to subsequent influenza exposures 
over a lifespan.47 Subsequent exposures may boost antibody 
responses to antigens with egg-adapted substitutions that are 
not found in the wild-type strains.47

Currently, aside from egg-based platforms, only cell-based and 
recombinant protein platforms are available for influenza vac-
cines, although they are less extensively used.11 For cell-based 
vaccines, it remains less well understood if cell culture- 

propagated vaccine viruses have fewer adaptations than observed 
with egg-propagated vaccines, as the extent of antigenic match 
between each vaccine platform (egg- or cell-based) and circulat-
ing strains has not been routinely reported for each influenza 
season. However, it is also possible for mutations in viruses to 
occur during cell culture propagation, which has been demon-
strated for A/H3N2 and B strains.111,112 A literature analysis of 
the antigenic similarity of egg-propagated and cell culture- 
propagated influenza viruses to worldwide circulating viruses 
for influenza seasons 2008 to 2018 found high antigenic similarity 
between both cell culture- and egg-propagated viruses with cir-
culating A/H1N1 strains and B/Yamagata strains.113 However, 
from 2012 to 2018, a substantially higher proportion of circulat-
ing A/H3N2 and B/Victoria strains were antigenically similar to 
cell culture-propagated viruses than egg-propagated viruses.113

Comparisons of VE for egg-derived and cell culture-derived 
influenza vaccines for the 2017–2020 US seasons among indi-
viduals aged ≥65 years have not consistently demonstrated 
a benefit for cell culture-propagated over egg-propagated 
vaccines.114–116 Notably, egg-derived seed viruses were 
used in cell culture-based vaccine manufacture before the 
2017–2018 influenza season for A/H3N2,11,115,117 before the 
2019–2020 season for A/H1N1115 and at least until the 2017– 
2018 season for influenza B strains.115 As such, cell-propagated 
vaccines derived from egg-derived seed viruses may also carry 
egg-adapted mutations.117 From the 2021–2022 season 
onward, all four influenza strains used in the cell culture – 
based vaccines were developed in an egg-independent manner, 
and therefore allow a more definitive comparison of effective-
ness relative to egg-derived vaccines.118 In contrast to egg- and 
cell culture-based platforms, recombinant protein-based 

Figure 2. Influenza vaccine manufacturing using egg-based, cell culture-based, and mRNA-based platforms. HA hemagglutinin; mRNA messenger RNA. Currently, egg- 
and cell culture-based technologies require approximately 6 months for vaccine manufacturing98 after the World Health Organization releases the recommended 
vaccine composition in February/March ahead of the forthcoming Northern Hemisphere influenza season,32–35,37–41 By comparison, an mRNA-based influenza vaccine 
platform may only take 2–3 months to manufacture (based on the timeline for SARS-CoV-2 vaccine manufacturing).99,100
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vaccines have a negligible mutation risk.11 However, studies 
reporting their VE versus egg-based vaccines have been limited 
and provided varied results.116,119–121 Further studies of VE for 
the recombinant protein-based and mRNA vaccines for seaso-
nal influenza are warranted.

Conclusions

Overall, vaccine mismatch to circulating strains due to either 
antigenic drift or egg-adapted mutations was documented to 
occur in all but one of the 2011–2020 influenza seasons. The 
presence of antigenic drift and/or egg adaptation likely contrib-
uted to reduced influenza VE observed during certain seasons of 
this time period. However, a limitation of this literature review 
is that evidence of antigenic drift may not have always been 
documented, but natural viral evolution likely occurred none-
theless; the true impact of seasonal antigenic drift therefore may 
not be fully captured in this review. The impact of egg-adapted 
mutations may also be underestimated because the identified 
publications focused on reporting larger effects on VE. In addi-
tion, this review is primarily based on findings from North 
America, with few studies identified from Europe or elsewhere. 
Further understanding of the true impact of egg propagation on 
VE and patient outcomes is needed.

Development of optimized next-generation vaccines with 
higher effectiveness against seasonal influenza is important 
for reducing disease burden worldwide. If other vaccine 
manufacturing platforms result in vaccines that demonstrate 
increased VE, then scaling up the manufacture of those 
vaccines, particularly if they allow vaccine strain selection 
to occur nearer to the start of the influenza season, may 
help to address current challenges. The use of alternative 
vaccine manufacturing platforms, such as mRNA, is cur-
rently under evaluation and may help to reduce these chal-
lenges. Although still under clinical development, the mRNA 
platform may be advantageous due to a rapid, scalable man-
ufacturing process and no requirement for egg or cell culture 
propagation to therefore avoid egg- or cell-adapted muta-
tions. Regulatory challenges of mRNA seasonal influenza 
vaccines are evident as delayed strain selection to more 
closely match circulating strains relies on a coordinated effort 
between the WHO, regulatory bodies, and vaccine manufac-
turers to convene later strain selection procedures. In addi-
tion, mRNA vaccines have the potential for multi-component 
compositions (eg, against multiple clades/sub-clades of each 
seasonal influenza virus and against multiple influenza virus 
proteins) that may broaden protection. However, certain 
challenges for this platform also need to be considered, 
including the potential for reactogenicity to limit vaccine 
uptake. The widespread distribution of COVID-19 mRNA 
vaccines has allowed for rigorous clinical and post- 
authorization evaluations of mRNA vaccine safety. Overall, 
most events after mRNA vaccination are temporary in dura-
tion and mild to moderate in severity, occurring at increased 
frequency compared with other vaccine platforms. Long-term 
safety assessments of COVID-19 mRNA vaccines are 
ongoing and continue to be informed by clinical studies 
and real-world monitoring of safety events. For annually 
administered seasonal influenza vaccines, understanding 

consumer preferences for vaccine attributes and the under-
lying drivers of vaccine choice will thus be important. 
Notably, a discrete-choice experiment among US adult con-
sumers indicated that the vaccine choice was largely driven 
by a preference for avoiding the risk of flu-like symptoms 
and improved vaccine efficacy, with consumers more tolerant 
of the risk of adverse reactions in exchange for increased 
vaccine efficacy.122 Overall, the success of mRNA vaccines for 
SARS-CoV-2 has indicated the immense potential of mRNA 
vaccines in mitigating infectious diseases, and validation of 
mRNA vaccines for seasonal influenza is eagerly awaited.
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