105 research outputs found

    Frequent and recent retrotransposition of orthologous genes plays a role in the evolution of sperm glycolytic enzymes

    Get PDF
    <p><b>Abstract</b></p> <p>Background</p> <p>The central metabolic pathway of glycolysis converts glucose to pyruvate, with the net production of 2 ATP and 2 NADH per glucose molecule. Each of the ten reactions in this pathway is typically catalyzed by multiple isozymes encoded by a multigene family. Several isozymes in this pathway are expressed only during spermatogenesis, and gene targeting studies indicate that they are essential for sperm function and male fertility in mouse. At least three of the novel glycolytic isozymes are encoded by retrogenes (<it>Pgk2</it>, <it>Aldoart1</it>, and <it>Aldoart2</it>). Their restricted expression profile suggests that retrotransposition may play a significant role in the evolution of sperm glycolytic enzymes.</p> <p>Results</p> <p>We conducted a comprehensive genomic analysis of glycolytic enzymes in the human and mouse genomes and identified several intronless copies for all enzymes in the pathway, except <it>Pfk</it>. Within each gene family, a single orthologous gene was typically retrotransposed frequently and independently in both species. Several retroposed sequences maintained open reading frames (ORFs) and/or provided evidence of alternatively spliced exons. We analyzed expression of sequences with ORFs and <99% sequence identity in the coding region and obtained evidence for the expression of an alternative <it>Gpi1 </it>transcript in mouse spermatogenic cells.</p> <p>Conclusions</p> <p>Our analysis detected frequent, recent, and lineage-specific retrotransposition of orthologous glycolytic enzymes in the human and mouse genomes. Retrotransposition events are associated with LINE/LTR and genomic integration is random. We found evidence for the alternative splicing of parent genes. Many retroposed sequences have maintained ORFs, suggesting a functional role for these genes.</p

    Consensus guidelines for management of hyperammonaemia in paediatric patients receiving continuous kidney replacement therapy.

    Get PDF
    Hyperammonaemia in children can lead to grave consequences in the form of cerebral oedema, severe neurological impairment and even death. In infants and children, common causes of hyperammonaemia include urea cycle disorders or organic acidaemias. Few studies have assessed the role of extracorporeal therapies in the management of hyperammonaemia in neonates and children. Moreover, consensus guidelines are lacking for the use of non-kidney replacement therapy (NKRT) and kidney replacement therapies (KRTs, including peritoneal dialysis, continuous KRT, haemodialysis and hybrid therapy) to manage hyperammonaemia in neonates and children. Prompt treatment with KRT and/or NKRT, the choice of which depends on the ammonia concentrations and presenting symptoms of the patient, is crucial. This expert Consensus Statement presents recommendations for the management of hyperammonaemia requiring KRT in paediatric populations. Additional studies are required to strengthen these recommendations

    Is Microsporidial keratitis an emerging cause of stromal keratitis? – a case series study

    Get PDF
    BACKGROUND: Microsporidial keratitis is a rare cause of stromal keratitis. We present a series of five cases of microsporidial keratitis from a single centre in southern India with microbiologic and histopathologic features. CASE PRESENTATION: Patient charts of five cases of microsporidial stromal keratitis diagnosed between January 2002 and June 2004 were reviewed retrospectively for clinical data, microbiologic and histopathologic data. The presence of microsporidia was confirmed by special stains on corneal scrapings and/or corneal tissues, and electron microscopy. All patients were immunocompetent with a preceding history of trauma in three. Four patients presented with unilateral, small, persisting deep stromal infiltrates, of uncertain etiology, in the cornea, which were not responding to conventional antimicrobial treatment and required penetrating keratoplasty in three. Fifth case was unsuspected and underwent keratoplasty for post-traumatic scar. Three of five cases were diagnosed on corneal scrapings, prior to keratoplasty, while two were diagnosed only on histology. The microsporidia appeared as oval well defined bodies with dense staining at one pole. None of the patients showed recurrence following keratoplasty. CONCLUSION: Microsporidia, though rare, should be suspected in chronic culture-negative stromal keratitis. Organisms could lie dormant without associated inflammation

    Recent progress in translational research on neurovascular and neurodegenerative disorders

    Get PDF
    The already established and widely used intravenous application of recombinant tissue plasminogen activator as a re-opening strategy for acute vessel occlusion in ischemic stroke was recently added by mechanical thrombectomy, representing a fundamental progress in evidence-based medicine to improve the patient’s outcome. This has been paralleled by a swift increase in our understanding of pathomechanisms underlying many neurovascular diseases and most prevalent forms of dementia. Taken together, these current advances offer the potential to overcome almost two decades of marginally successful translational research on stroke and dementia, thereby spurring the entire field of translational neuroscience. Moreover, they may also pave the way for the renaissance of classical neuroprotective paradigms. This review reports and summarizes some of the most interesting and promising recent achievements in neurovascular and dementia research. It highlights sessions from the 9th International Symposium on Neuroprotection and Neurorepair that have been discussed from April 19th to 22nd in Leipzig, Germany. To acknowledge the emerging culture of interdisciplinary collaboration and research, special emphasis is given on translational stories ranging from fundamental research on neurode- and -regeneration to late stage translational or early stage clinical investigations

    Keratocyte loss in corneal infection through apoptosis: a histologic study of 59 cases

    Get PDF
    BACKGROUND: Keratocyte loss by apoptosis following epithelial debridement is a well-recognized entity. In a study of corneal buttons obtained from patients of corneal ulcer undergoing therapeutic keratoplasty, we observed loss of keratocytes in the normal appearing corneal stroma, surrounding the zone of inflammation. Based on these observations, we hypothesized that the cell loss in the inflammatory free zone of corneal stroma is by apoptosis that could possibly be a non-specific host response, independent of the nature of infectious agent. METHODS: To test our hypothesis, in this study, we performed Terminal deoxyribonucleotidyl transferase-mediated d-Uridine 5" triphosphate Nick End Labelling (TUNEL) staining on 59 corneal buttons from patients diagnosed as bacterial, fungal, viral and Acanthamoeba keratitis. The corneal sections were reviewed for morphologic changes in the epithelium, stroma, type, degree and depth of inflammation, loss of keratocytes in the surrounding stroma (posterior or peripheral). TUNEL positivity was evaluated in the corneal sections, both in the zone of inflammation as well as the surrounding stroma. A correlation was attempted between the keratocyte loss, histologic, microbiologic and clinical features. RESULTS: The corneal tissues were from 59 patients aged between 16 years and 85 years (mean 46 years) and included fungal (22), viral (15), bacterial (14) and Acanthamoeba (8) keratitis. The morphological changes in corneal tissues noted were: epithelial ulceration (52, 88.1%), destruction of Bowman's layer (58, 99%), mild to moderate (28; 47.5%) to severe inflammation (31; 52.5%). Morphologic evidence of disappearance or reduced number of keratocytic nuclei in the corneal stroma was noted in 49 (83%) cases; while the TUNEL positive brown cells were identified in all cases 53/54 (98%), including cases of fungal (19), bacterial (14), viral (13), and Acanthamoeba keratitis. TUNEL staining was located mostly in the deeper stroma and in few cases the peripheral stroma. TUNEL positivity was also noted with the polymorphonuclear infiltrates and in few epithelial cells (10 of 59, 17%) cases, more with viral infections (6/10; 60%). CONCLUSIONS: We report apoptotic cell death of keratocytes in the corneal stroma in infectious keratitis, a phenomenon independent of type of infectious agent. The inflammatory cells in the zone of inflammation also show evidence of apoptotic cell death. It could be speculated that the infective process possibly triggers keratocyte loss of the surrounding stroma by apoptosis, which could possibly be a protective phenomenon. It also suggests that necrotic cell death and apoptotic cell deaths could occur simultaneously in infective conditions of the cornea

    Establishing Human Lacrimal Gland Cultures with Secretory Function

    Get PDF
    PURPOSE: Dry eye syndrome is a multifactorial chronic disabling disease mainly caused by the functional disruptions in the lacrimal gland. The treatment involves palliation like ocular surface lubrication and rehydration. Cell therapy involving replacement of the gland is a promising alternative for providing long-term relief to patients. This study aimed to establish functionally competent lacrimal gland cultures in-vitro and explore the presence of stem cells in the native gland and the established in-vitro cultures. METHODS: Fresh human lacrimal gland from patients undergoing exenteration was harvested for cultures after IRB approval. The freshly isolated cells were evaluated by flow cytometry for expression of stem cell markers ABCG2, high ALDH1 levels and c-kit. Cultures were established on Matrigel, collagen and HAM and the cultured cells evaluated for the presence of stem cell markers and differentiating markers of epithelial (E-cadherin, EpCAM), mesenchymal (Vimentin, CD90) and myofibroblastic (α-SMA, S-100) origin by flow cytometry and immunocytochemistry. The conditioned media was tested for secretory proteins (scIgA, lactoferrin, lysozyme) post carbachol (100 µM) stimulation by ELISA. RESULTS: Native human lacrimal gland expressed ABCG2 (mean±SEM: 3.1±0.61%), high ALDH1 (3.8±1.26%) and c-kit (6.7±2.0%). Lacrimal gland cultures formed a monolayer, in order of preference on Matrigel, collagen and HAM within 15-20 days, containing a heterogeneous population of stem-like and differentiated cells. The epithelial cells formed 'spherules' with duct like connections, suggestive of ductal origin. The levels of scIgA (47.43 to 61.56 ng/ml), lysozyme (24.36 to 144.74 ng/ml) and lactoferrin (32.45 to 40.31 ng/ml) in the conditioned media were significantly higher than the negative controls (p<0.05 for all comparisons). CONCLUSION: The study reports the novel finding of establishing functionally competent human lacrimal gland cultures in-vitro. It also provides preliminary data on the presence of stem cells and duct-like cells in the fresh and in-vitro cultured human lacrimal gland. These significant findings could pave way for cell therapy in future

    Ligation of Macrophage Fcγ Receptors Recapitulates the Gene Expression Pattern of Vulnerable Human Carotid Plaques

    Get PDF
    Stroke is a leading cause of death in the United States. As ∼60% of strokes result from carotid plaque rupture, elucidating the mechanisms that underlie vulnerability is critical for therapeutic intervention. We tested the hypothesis that stable and vulnerable human plaques differentially express genes associated with matrix degradation. Examination established that femoral, and the distal region of carotid, plaques were histologically stable while the proximal carotid plaque regions were vulnerable. Quantitative RT-PCR was used to compare expression of 22 genes among these tissues. Distal carotid and femoral gene expression was not significantly different, permitting the distal carotid segments to be used as a paired control for their corresponding proximal regions. Analysis of the paired plaques revealed differences in 16 genes that impact plaque stability: matrix metalloproteinases (MMP, higher in vulnerable), MMP modulators (inhibitors: lower, activators: higher in vulnerable), activating Fc receptors (FcγR, higher in vulnerable) and FcγR signaling molecules (higher in vulnerable). Surprisingly, the relative expression of smooth muscle cell and macrophage markers in the three plaque types was not significantly different, suggesting that macrophage distribution and/or activation state correlates with (in)stability. Immunohistochemistry revealed that macrophages and smooth muscle cells localize to distinct and non-overlapping regions in all plaques. MMP protein localized to macrophage-rich regions. In vitro, treatment of macrophages with immune complexes, but not oxidized low density lipoprotein, C-reactive protein, or TNF-α, induced a gene expression profile similar to that of the vulnerable plaques. That ligation of FcγR recapitulates the pattern of gene expression in vulnerable plaques suggests that the FcγR → macrophage activation pathway may play a greater role in human plaque vulnerability than previously appreciated

    Gene expression differences between stroke-associated and asymptomatic carotid plaques

    Get PDF
    Atherosclerotic carotid stenosis is an important risk factor for stroke. Carotid plaques (CPs) causing stroke may present a distinct type of molecular pathology compared with transient ischemic attack (TIA)-associated or asymptomatic plaques. We compared the gene expression profiles of CPs from stroke patients (n = 12) and asymptomatic patients (n = 9), both with similar risk factors and severity of carotid stenosis (>70%). Sixty probes showed over 1.5-fold expression difference at 5% false discovery rate. Functional clustering showed enrichment of genes in 51 GO categories and seven pathways, the most significant of which relate to extracellular-matrix interaction, PPAR gamma signaling, scavanger receptor activity, and lysosomal activity. Differential expression of ten genes was confirmed in an extended replication group (n = 43), where the most significant expression differences were found in CD36 (2.1-fold change, p = 0.005), CD163 (1.7-fold change, p = 0.007) and FABP4 (2.2-fold change, p = 0.015). These include four genes not previously linked to plaque destabilization: GLUL (2.2-fold change, p = 0.016), FUCA1 (2.2-fold change, p = 0.025), IL1RN (1.6-fold change, p = 0.034), and S100A8 (2.5-fold change, p = 0.047). Strong correlations were found to plaque ulceration, plaque hemorrhage, and markers of apoptosis and proliferation (activated caspase 3, TUNEL, and Ki67). Protein expression of these genes was confirmed by immunohistochemistry and was found in the atheromatous areas of CPs critical for plaque destabilization. This study presents a comprehensive transcriptional analysis of stroke-associated CPs and demonstrates a significant transcriptome difference between stroke-associated and asymptomatic CPs. Follow-up studies on the identified genes are needed to define whether they could be used as biomarkers of symptomatic CPs or have a role in plaque destabilization
    • …
    corecore