770 research outputs found
Excitonic pairing between nodal fermions
We study excitonic pairing in nodal fermion systems characterized by a
vanishing quasiparticle density of states at the pointlike Fermi surface and a
concomitant lack of screening for long-range interactions. By solving the gap
equation for the excitonic order parameter, we obtain a critical value of the
interaction strength for a variety of power-law interactions and densities of
states. We compute the free energy and analyze possible phase transitions, thus
shedding further light on the unusual pairing properties of this peculiar class
of strongly correlated systems.Comment: 9 pages, 7 figures, minor revisions made, final versio
Activation by SLAM Family Receptors Contributes to NK Cell Mediated "Missing-Self" Recognition.
Natural Killer (NK) cells attack normal hematopoietic cells that do not express inhibitory MHC class I (MHC-I) molecules, but the ligands that activate NK cells remain incompletely defined. Here we show that the expression of the Signaling Lymphocyte Activation Molecule (SLAM) family members CD48 and Ly9 (CD229) by MHC-I-deficient tumor cells significantly contributes to NK cell activation. When NK cells develop in the presence of T cells or B cells that lack inhibitory MHC-I but express activating CD48 and Ly9 ligands, the NK cells' ability to respond to MHC-I-deficient tumor cells is severely compromised. In this situation, NK cells express normal levels of the corresponding activation receptors 2B4 (CD244) and Ly9 but these receptors are non-functional. This provides a partial explanation for the tolerance of NK cells to MHC-I-deficient cells in vivo. Activating signaling via 2B4 is restored when MHC-I-deficient T cells are removed, indicating that interactions with MHC-I-deficient T cells dominantly, but not permanently, impair the function of the 2B4 NK cell activation receptor. These data identify an important role of SLAM family receptors for NK cell mediated "missing-self" reactivity and suggest that NK cell tolerance in MHC-I mosaic mice is in part explained by an acquired dysfunction of SLAM family receptors
Vortex lattice stability in the SO(5) model
We study the energetics of superconducting vortices in the SO(5) model for
high- materials proposed by Zhang. We show that for a wide range of
parameters normally corresponding to type II superconductivity, the free energy
per unit flux \FF(m) of a vortex with flux quanta is a decreasing
function of , provided the doping is close to its critical value. This
implies that the Abrikosov lattice is unstable, a behaviour typical of type I
superconductors. For dopings far from the critical value, \FF(m) can become
very flat, indicating a less rigid vortex lattice, which would melt at a lower
temperature than expected for a BCS superconductor.Comment: 4 pp, revtex, 5 figure
Weak Ferromagnetism and Excitonic Condensates
We investigate a model of excitonic ordering (i.e electron-hole pair
condensation) appropriate for the divalent hexaborides. We show that the
inclusion of imperfectly nested electron hole Fermi surfaces can lead to the
formation of an undoped excitonic metal phase. In addition, we find that weak
ferromagnetism with compensated moments arises as a result of gapless
excitations. We study the effect of the low lying excitations on the density of
states, Fermi surface topology and optical conductivity and compare to
available experimental data.Comment: 10 Pages, 8 Figures, RevTe
Quasiparticles in the 111 state and its compressible ancestors
We investigate the relationship of the spontaneously inter-layer coherent
``111''state of quantum Hall bilayers at total filling factor \nu=1 to
``mutual'' composite fermions, in which vortices in one layer are bound to
electrons in the other. Pairing of the mutual composite fermions leads to the
low-energy properties of the 111 state, as we explicitly demonstrate using
field-theoretic techniques. Interpreting this relationship as a mechanism for
inter-layer coherence leads naturally to two candidate states with
non-quantized Hall conductance: the mutual composite Fermi liquid, and an
inter-layer coherent charge e Wigner crystal. The experimental behavior of the
interlayer tunneling conductance and resistivity tensors are discussed for
these states.Comment: 4 Pages, RevTe
Theory of High \tc Ferromagnetism in family: A case of Doped Spin-1 Mott insulator in a Valence Bond Solid Phase
Doped divalent hexaborides such as exhibit high \tc
ferromagnetism. We isolate a degenerate pair of -orbitals of boron with two
valence electrons, invoke electron correlation and Hund coupling, to suggest
that the undoped state is better viewed as a spin-1 Mott insulator; it is
predicted to be a type of 3d Haldane gap phase with a spin gap ,
much smaller than the charge gap of seen in ARPES. The
experimentally seen high \tc `ferromagnetism' is argued to be a complex
magnetic order in disguise - either a canted 6-sublattice AFM ()
order or its quantum melted version, a chiral spin liquid state, arising from a
type of double exchange mechanism.Comment: 4 pages, 2 figures; minor corrections, references adde
Heavy electrons and the symplectic symmetry of spin
The recent discovery of two heavy fermion materials PuCoGa_{5} and
NpPd_{5}Al_{2} which transform directly from Curie paramagnets into
superconductors, reveals a new class of superconductor where local moments
quench directly into a superconducting condensate. A powerful tool in the
description of heavy fermion metals is the large N expansion, which expands the
physics in powers of 1/N about a solvable limit where particles carry a large
number (N) of spin components. As it stands, this method is unable to jointly
describe the spin quenching and superconductivity which develop in PuCoGa_{5}
and NpPd_{5}Al_{2}. Here, we solve this problem with a new class of large N
expansion that employs the symplectic symmetry of spin to protect the odd
time-reversal parity of spin and sustain Cooper pairs as well-defined singlets.
With this method we show that when a lattice of magnetic ions exchange spin
with their metallic environment in two distinct symmetry channels, they are
able to simultaneously satisfy both channels by forming a condensate of
composite pairs between between local moments and electrons. In the tetragonal
crystalline environment relevant to PuCoGa_{5} and NpPd_{5}Al_{2} the lattice
structure selects a natural pair of spin exchange channels, giving rise to the
prediction of a unique anisotropic paired state with g-wave symmetry. This
pairing mechanism predicts a large upturn in the NMR relaxation rate above
T_{c}, a strong enhancement of Andreev reflection in tunneling measurements and
an enhanced superconducting transition temperature T_{c} in Pu doped
Np_{1-x}Pu_{x}Pd_{5}Al_{2}.Comment: This is a substantially revised version of the original paper,
focussing on the high temperature heavy electron superconductors PuCoGa_5 and
NpPd_5Al_2. A substantially revised supplementary online material to this
paper can be found in arXiv 0710.1128v
SO(5) theory of insulating vortex cores in high- materials
We study the fermionic states of the antiferromagnetically ordered vortex
cores predicted to exist in the superconducting phase of the newly proposed
SO(5) model of strongly correlated electrons. Our model calculation gives a
natural explanation of the recent STM measurements on BSCCO, which in
surprising contrast to YBCO revealed completely insulating vortex cores.Comment: 4 pages, 1 figur
- …
