770 research outputs found

    Excitonic pairing between nodal fermions

    Get PDF
    We study excitonic pairing in nodal fermion systems characterized by a vanishing quasiparticle density of states at the pointlike Fermi surface and a concomitant lack of screening for long-range interactions. By solving the gap equation for the excitonic order parameter, we obtain a critical value of the interaction strength for a variety of power-law interactions and densities of states. We compute the free energy and analyze possible phase transitions, thus shedding further light on the unusual pairing properties of this peculiar class of strongly correlated systems.Comment: 9 pages, 7 figures, minor revisions made, final versio

    Activation by SLAM Family Receptors Contributes to NK Cell Mediated "Missing-Self" Recognition.

    Get PDF
    Natural Killer (NK) cells attack normal hematopoietic cells that do not express inhibitory MHC class I (MHC-I) molecules, but the ligands that activate NK cells remain incompletely defined. Here we show that the expression of the Signaling Lymphocyte Activation Molecule (SLAM) family members CD48 and Ly9 (CD229) by MHC-I-deficient tumor cells significantly contributes to NK cell activation. When NK cells develop in the presence of T cells or B cells that lack inhibitory MHC-I but express activating CD48 and Ly9 ligands, the NK cells' ability to respond to MHC-I-deficient tumor cells is severely compromised. In this situation, NK cells express normal levels of the corresponding activation receptors 2B4 (CD244) and Ly9 but these receptors are non-functional. This provides a partial explanation for the tolerance of NK cells to MHC-I-deficient cells in vivo. Activating signaling via 2B4 is restored when MHC-I-deficient T cells are removed, indicating that interactions with MHC-I-deficient T cells dominantly, but not permanently, impair the function of the 2B4 NK cell activation receptor. These data identify an important role of SLAM family receptors for NK cell mediated "missing-self" reactivity and suggest that NK cell tolerance in MHC-I mosaic mice is in part explained by an acquired dysfunction of SLAM family receptors

    Vortex lattice stability in the SO(5) model

    Full text link
    We study the energetics of superconducting vortices in the SO(5) model for high-TcT_c materials proposed by Zhang. We show that for a wide range of parameters normally corresponding to type II superconductivity, the free energy per unit flux \FF(m) of a vortex with mm flux quanta is a decreasing function of mm, provided the doping is close to its critical value. This implies that the Abrikosov lattice is unstable, a behaviour typical of type I superconductors. For dopings far from the critical value, \FF(m) can become very flat, indicating a less rigid vortex lattice, which would melt at a lower temperature than expected for a BCS superconductor.Comment: 4 pp, revtex, 5 figure

    Weak Ferromagnetism and Excitonic Condensates

    Full text link
    We investigate a model of excitonic ordering (i.e electron-hole pair condensation) appropriate for the divalent hexaborides. We show that the inclusion of imperfectly nested electron hole Fermi surfaces can lead to the formation of an undoped excitonic metal phase. In addition, we find that weak ferromagnetism with compensated moments arises as a result of gapless excitations. We study the effect of the low lying excitations on the density of states, Fermi surface topology and optical conductivity and compare to available experimental data.Comment: 10 Pages, 8 Figures, RevTe

    Quasiparticles in the 111 state and its compressible ancestors

    Full text link
    We investigate the relationship of the spontaneously inter-layer coherent ``111''state of quantum Hall bilayers at total filling factor \nu=1 to ``mutual'' composite fermions, in which vortices in one layer are bound to electrons in the other. Pairing of the mutual composite fermions leads to the low-energy properties of the 111 state, as we explicitly demonstrate using field-theoretic techniques. Interpreting this relationship as a mechanism for inter-layer coherence leads naturally to two candidate states with non-quantized Hall conductance: the mutual composite Fermi liquid, and an inter-layer coherent charge e Wigner crystal. The experimental behavior of the interlayer tunneling conductance and resistivity tensors are discussed for these states.Comment: 4 Pages, RevTe

    Theory of High \tc Ferromagnetism in SrB6SrB_6 family: A case of Doped Spin-1 Mott insulator in a Valence Bond Solid Phase

    Full text link
    Doped divalent hexaborides such as Sr1xLaxB6Sr_{1-x}La_xB_6 exhibit high \tc ferromagnetism. We isolate a degenerate pair of 2p2p-orbitals of boron with two valence electrons, invoke electron correlation and Hund coupling, to suggest that the undoped state is better viewed as a spin-1 Mott insulator; it is predicted to be a type of 3d Haldane gap phase with a spin gap 0.1eV\sim 0.1 eV, much smaller than the charge gap of >1.0eV > 1.0 eV seen in ARPES. The experimentally seen high \tc `ferromagnetism' is argued to be a complex magnetic order in disguise - either a canted 6-sublattice AFM (1200\approx 120^0) order or its quantum melted version, a chiral spin liquid state, arising from a type of double exchange mechanism.Comment: 4 pages, 2 figures; minor corrections, references adde

    Heavy electrons and the symplectic symmetry of spin

    Full text link
    The recent discovery of two heavy fermion materials PuCoGa_{5} and NpPd_{5}Al_{2} which transform directly from Curie paramagnets into superconductors, reveals a new class of superconductor where local moments quench directly into a superconducting condensate. A powerful tool in the description of heavy fermion metals is the large N expansion, which expands the physics in powers of 1/N about a solvable limit where particles carry a large number (N) of spin components. As it stands, this method is unable to jointly describe the spin quenching and superconductivity which develop in PuCoGa_{5} and NpPd_{5}Al_{2}. Here, we solve this problem with a new class of large N expansion that employs the symplectic symmetry of spin to protect the odd time-reversal parity of spin and sustain Cooper pairs as well-defined singlets. With this method we show that when a lattice of magnetic ions exchange spin with their metallic environment in two distinct symmetry channels, they are able to simultaneously satisfy both channels by forming a condensate of composite pairs between between local moments and electrons. In the tetragonal crystalline environment relevant to PuCoGa_{5} and NpPd_{5}Al_{2} the lattice structure selects a natural pair of spin exchange channels, giving rise to the prediction of a unique anisotropic paired state with g-wave symmetry. This pairing mechanism predicts a large upturn in the NMR relaxation rate above T_{c}, a strong enhancement of Andreev reflection in tunneling measurements and an enhanced superconducting transition temperature T_{c} in Pu doped Np_{1-x}Pu_{x}Pd_{5}Al_{2}.Comment: This is a substantially revised version of the original paper, focussing on the high temperature heavy electron superconductors PuCoGa_5 and NpPd_5Al_2. A substantially revised supplementary online material to this paper can be found in arXiv 0710.1128v

    SO(5) theory of insulating vortex cores in high-TcT_c materials

    Full text link
    We study the fermionic states of the antiferromagnetically ordered vortex cores predicted to exist in the superconducting phase of the newly proposed SO(5) model of strongly correlated electrons. Our model calculation gives a natural explanation of the recent STM measurements on BSCCO, which in surprising contrast to YBCO revealed completely insulating vortex cores.Comment: 4 pages, 1 figur
    corecore