1,817 research outputs found

    Limit on the LMC mass from a census of its satellites

    Get PDF
    We study the orbits of ultra-faint dwarf galaxies in the combined presence of the Milky Way and LMC and we find 6 dwarfs which were likely accreted with the LMC (Car 2, Car 3, Hor 1, Hyi 1, Phe 2, Ret 2), in addition to the SMC, representing strong evidence of dwarf galaxy group infall. This procedure depends on the gravitational pull of the LMC, thus allowing us to place a lower bound on the Cloud's mass of MLMC>1.24×1011M⊙M_{\rm LMC} > 1.24\times10^{11} M_\odot. This mass estimate is validated by applying the technique to a cosmological zoom-in simulation of a Milky Way-like galaxy with an LMC analogue where we find that while this lower bound may be overestimated, it will improve in the future with smaller observational errors. We apply this technique to dwarf galaxies lacking radial velocities and find that Eri 3 has a broad range of radial velocities for which it has a significant chance (>0.4> 0.4) of having being bound to the Cloud. We study the non-Magellanic classical satellites and find that Fornax has an appreciable probability of being an LMC satellite if the LMC is sufficiently massive. In addition, we explore how the orbits of the Milky Way satellites change in the presence of the LMC and find a significant change for several objects. Finally, we find that the LMC satellites are slightly smaller than the Milky Way satellites at a fixed luminosity, possibly due to the different tidal environments they have experienced.Comment: 9 pages, 7 figures. Submitted to MNRAS. Comments welcom

    How bacterial cells and colonies move on solid substrates

    Full text link
    Many bacteria rely on active cell appendages, such as type IV pili, to move over substrates and interact with neighboring cells. Here, we study the motion of individual cells and bacterial colonies, mediated by the collective interactions of multiple pili. It was shown experimentally that the substrate motility of Neisseria gonorrhoeae cells can be described as a persistent random walk with a persistence length that exceeds the mean pili length. Moreover, the persistence length increases for a higher number of pili per cell. With the help of a simple, tractable stochastic model, we test whether a tug-of-war without directional memory can explain the persistent motion of single Neisseria gonorrhoeae cells. While the persistent motion of single cells indeed emerges naturally in the model, a tug-of-war alone is not capable of explaining the motility of microcolonies, which becomes weaker with increasing colony size. We suggest sliding friction between the microcolonies and the substrate as the missing ingredient. While such friction almost does not affect the general mechanism of single cell motility, it has a strong effect on colony motility. We validate the theoretical predictions by using a three-dimensional computational model that includes explicit details of the pili dynamics, force generation and geometry of cells.Comment: 25 pages, 17 figure

    Role of nitric oxide in the radiation-induced bystander effect

    Get PDF
    Cells that are not irradiated but are affected by “stress signal factors” released from irradiated cells are called bystander cells. These cells, as well as directly irradiated ones, express DNA damage-related proteins and display excess DNA damage, chromosome aberrations, mutations, and malignant transformation. This phenomenon has been studied widely in the past 20 years, since its first description by Nagasawa and Little in 1992, and is known as the radiation-induced bystander effect (RIBE). Several factors have been identified as playing a role in the bystander response. This review will focus on one of them, nitric oxide (NO), and its role in the stimulation and propagation of RIBE. The hydrophobic properties of NO, which permit its diffusion through the cytoplasm and plasma membranes, allow this signaling molecule to easily spread from irradiated cells to bystander cells without the involvement of gap junction intercellular communication. NO produced in irradiated tissues mediates cellular regulation through posttranslational modification of a number of regulatory proteins. The best studied of these modifications are S-nitrosylation (reversible oxidation of cysteine) and tyrosine nitration. These modifications can up- or down-regulate the functions of many proteins modulating different NO-dependent effects. These NO-dependent effects include the stimulation of genomic instability (GI) and the accumulation of DNA errors in bystander cells without direct DNA damage

    Towards a Bill of Rights For Russia: Progress and Roadblocks

    Get PDF
    Almost three years before the Soviet Union collapsed after the failed coup d\u27etat, I arrived at JFK International Airport as a member of a Soviet lawyers\u27 delegation
    • …
    corecore