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a b s t r a c t

Cells that are not irradiated but are affected by “stress signal factors” released from irradiated cells are
called bystander cells. These cells, as well as directly irradiated ones, express DNA damage-related
proteins and display excess DNA damage, chromosome aberrations, mutations, and malignant trans-
formation. This phenomenon has been studied widely in the past 20 years, since its first description by
Nagasawa and Little in 1992, and is known as the radiation-induced bystander effect (RIBE). Several
factors have been identified as playing a role in the bystander response. This review will focus on one of
them, nitric oxide (NO), and its role in the stimulation and propagation of RIBE. The hydrophobic
properties of NO, which permit its diffusion through the cytoplasm and plasma membranes, allow this
signaling molecule to easily spread from irradiated cells to bystander cells without the involvement of
gap junction intercellular communication. NO produced in irradiated tissues mediates cellular regulation
through posttranslational modification of a number of regulatory proteins. The best studied of these
modifications are S-nitrosylation (reversible oxidation of cysteine) and tyrosine nitration. These mod-
ifications can up- or down-regulate the functions of many proteins modulating different NO-dependent
effects. These NO-dependent effects include the stimulation of genomic instability (GI) and the accu-
mulation of DNA errors in bystander cells without direct DNA damage.

& 2015 Elsevier B.V.. Published by Elsevier B.V. All rights reserved.

1. Introduction

The radiation-induced bystander effect (RIBE) has been studied
widely over the past 20 years, since the description of this phe-
nomenon by Nagasawa and Little in 1992 [1]. It has been shown
that irradiated cells release “stress signal factors” (SSFs) that affect
adjacent cells or cells that have received the medium from irra-
diated cells. The role of a soluble transmissible factor(s) generated
by irradiated cells that in turn induces toxic effects in non-irra-
diated cells has been demonstrated in many medium-transfer
experiments (reviewed by [2]). Cells that are not irradiated but are
affected by SSFs are called bystander cells. SSFs stimulate expres-
sion of DNA damage-related proteins, excess DNA damage,

chromosome aberrations [3–5], mutations [6–9], and malignant
transformation in bystander cells [10,11]. To identify SSFs, in-
vestigations of RIBE have measured either the ability of factors to
be transferred from irradiated to non-irradiated cells by medium
transfer or the response of cultures to low fluence of α-particles,
wherein only a small percentage of cells were exposed. Using
these approaches, several factors have been identified as playing a
role in the bystander response. This review will focus on nitric
oxide (NO), an important signaling molecule, and its role in the
stimulation and propagation of RIBE.

2. RIBE and gap junctions

One controversy in studies on RIBE is whether RIBE is mediated
directly by gap junction intercellular communication (GJIC) and/or
diffusible cellular factors excreted from irradiated cells [12–16].
Gap junctions were favored candidates for explaining bystander
effects because they form clusters of intercellular membrane
channels connecting the cytoplasm of two neighboring cells. The
phenomenon of the bystander effect mediated by GJIC derives
originally from an observation in ganciclovir cancer gene therapy
that gap junctions mediate the transfer of gene products from
transfected to non-transfected cells, resulting in neighboring cell
death [17]. Although gap junction communication has been shown
to play an important role in the induction of bystander effects in
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some cell systems [12], there is a growing number of reports of
gap junction independent RIBE. It was shown that a bystander
effect stimulated in human lung carcinoma cell lines or in a rat
tumor cell line was not altered by gap junction inhibitors or en-
hancers [18]. Yang et al. (2005) demonstrated a bystander effect in
X-ray irradiated human fibroblasts that was independent from gap
junctional communications [19]. In his model, the irradiated and
non-irradiated normal human skin fibroblast cells shared the
medium, but never touched each other. Banaz-Yasar et al. (2008),
in studies with co-cultured malignant trophoblasts, showed that
RIBE was independent of direct cell-to-cell communication via gap
junction channels and independent of connexin isoforms [20].
Moreover, Gerashchenko and Howell (2003) demonstrated that
only cell proximity was a prerequisite for the bystander response
of γ-irradiated cells and not gap junctional communication or
soluble extracellular factors [21].

3. Ionizing radiation, NO, and the bystander effect

NO, generated from arginine by the activity of different iso-
forms of nitric oxide synthase (NOS), is a major signaling molecule
in the immune, cardiovascular, and nervous systems (reviewed by
[22]). The uniqueness of NO as a redox signaling molecule resides
in part in its relative stability and hydrophobic properties that
permit its diffusion through the cytoplasm and plasma mem-
branes over several cell diameter distances [23]. NO does not need
GJIC to reach bystander cells. Hence, stimulation of NO generation
can affect different pathways within the cell in which it is pro-
duced and diffuse through cell membranes to modulate signaling
pathways in bystander cells [24].

A number of studies have demonstrated activation of NOS and
stimulation of NO production by low-dose irradiation. Matsumoto
et al. have shown that X-ray irradiation activates inducible NOS
(iNOS) expression as early as 3 h post-irradiation and iNOS activity
continues to increase over a period of 24 h post-irradiation [25].

Just as iNOS activation has been reported to be important for
the induction of late events of RIBE (such as the formation of
micronuclei [MN]), activation of another type of nitric oxide syn-
thase, constitutive NOS (cNOS), has been shown to stimulate the
early signaling effects of low-dose irradiation. Leach et al. revealed
that after 2 Gy of X-ray irradiation, the activity of cNOS is tran-
siently enhanced at 5 min post-irradiation and by 30 min the ac-
tivity has returned to basal levels [26]. In both phases NO can
diffuse into and affect adjacent cells and stimulate RIBE.

DNA double-strand breaks (DSBs) are considered to be the
most relevant lesion for the deleterious effects of ionizing radia-
tion [27–29] and have been detected by several groups in by-
stander cells using γH2AX as a marker [5,19]. Han et al. demon-
strated NO-dependent stimulation of DNA DSBs in bystander cells
within 30 min of a low-dose radiation exposure [30]. The authors
assumed that this early bystander effect was cNOS-dependent.
Shao et al. [31,32] demonstrated a significant increase in the in-
cidence of MN in non-irradiated bystander cells that were in the
vicinity of cells irradiated through either the nucleus or the cyto-
plasm with a microbeam of α-particles. Pretreatment with a NO
scavenger, 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-
oxyl-3-oxide (c-PTIO), abolished excess MN formation. In another
study, Han et al. revealed that stimulated cell proliferation and
increased MN and DNA DSBs were observed simultaneously in the
bystander cell population, which were co-cultured with cells ir-
radiated by low-dose α-particles (1–10 cGy) [33]. NO played an
essential role in simulation of these effects in the bystander cell
population. Low concentrations of NO, generated by the NO-donor
spermidine, were shown to induce cell proliferation, DNA DSBs,
and MN simultaneously [33].

4. RIBE as an inflammatory-type response

Different factors can stimulate NO production in target cells
and increase DNA damage in bystander cells. Generation of NO and
reactive nitrogen species (NO/RNS) by iNOS is a critical feature of
the inflammatory environment [34]. It has been shown that
macrophage activation and inflammatory-type responses in the
hemopoietic system are early consequences of exposure to ioniz-
ing radiation in vivo [35]. Irradiation, as well as stimulation of
RAW 264.7 cells (a mouse leukemic monocyte macrophage cell
line) by lipopolysaccharide-induced iNOS activity and NO gen-
eration, increased DNA damage in bystander cells [36,37]. Pre-
treatment of target macrophages or bystander cells with the
competitive NOS inhibitor L-NAME significantly reduced the in-
duction of gene expression and DNA damage in bystander cells.

How does NO stimulate DNA damage in the bystander cells?
NO produced in inflamed or irradiated tissues mediates cellular
regulation through posttranslational modification of a number of
regulatory proteins. The best studied of these modifications are
S-nitrosylation [38–40] and tyrosine nitration [41–43]. Tyrosine
nitration is well-accepted marker of tissue inflammation and is
gaining attention because of its impact on carcinogenesis and tu-
mor growth. This protein posttranslational modification is medi-
ated by reactive nitrogen species such as peroxynitrite anion
(ONOO�) and nitrogen dioxide (�NO2), formed as secondary
products of NO metabolism in the presence of oxidants including
superoxide radicals (O2

��), hydrogen peroxide (H2O2), and tran-
sition metal centers [42,44]. Tyrosine nitration can up- or down-
regulate the functions of many proteins [43,45–47]. Ionizing irra-
diation stimulates expression and activity of iNOS along with ac-
cumulation of tyrosine nitration within cellular proteins in a dose-
dependent manner [48]. These effects are inhibited by N-[3-
(aminomethyl) benzyl] acetamidine dihydrochloride, a specific
inhibitor of iNOS. Exposure to ionizing radiation increased the
production of tyrosine nitration in irradiated bone marrow cells
in vivo and in co-cultured/non-irradiated clonal-dependent
hematopoietic progenitor cell line. The induction of iNOS expres-
sion and iNOS-dependent release of nitric oxide in bone marrow
stromal cells was observed within 24 h after irradiation and was
similar in magnitude to that observed in cultures incubated with
IL-1β and TNF-α [48].

Some authors hypothesize that moderate increases of NO sti-
mulate proliferation and shorten the cell cycle in bystander cells,
thus reducing the time to repair DSBs. Increased cell division
might increase the probability of carcinogenesis in bystander cells
because cell proliferation increases the probability of mutations
from mis-repaired DSBs [33]. However, other researchers have
shown that accumulation of bystander DNA damage is not de-
pendent on the length of the cell cycle. Their results indicate that
accumulation of bystander DNA damage is possible in non-pro-
liferative cells with high transcription rates [49,50]. There is also
evidence that radiation-induced genomic instability (GI) can be
induced by indirect mechanisms [51,52] and that in both hemo-
poietic tissue [53] and mammary epithelium [54], there is geno-
type-dependent expression of the instability phenotype. Taken
together, the data support the hypothesis that there is an inverse
relationship between effective recognition of damage and ex-
pression of an instability phenotype.

Interactions between irradiated and non-irradiated hemo-
poietic cells stimulate GI in the last ones both in vitro and in vivo
[51,52]. Activated macrophages are known to produce clastogenic
factors, via the intermediacy of superoxide and NO, and are able to
induce gene mutations, DNA base modifications, DNA strand
breaks, and cytogenetic damage in neighboring cells [55]. One
possible mechanism is NO-induced reduction of homologous re-
combination repair (HRR). I recently demonstrated that NO,
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generated in macrophages, inhibits expression of breast cancer
type 1 susceptibility protein (BRCA1) in co-cultured bystander cell
lines [37]. BRCA1 protein contributes to cell viability in multiple
ways, including HRR of DSBs, cell-cycle checkpoint control, mitotic
spindle assembly, and regulation of chromosome segregation [56–
58]. The loss of BRCA1 protein function predisposes individuals to
the development of breast and ovarian cancers [59]. The key step
of this mechanism is the NO-induced tyrosine nitration and acti-
vation of PP2A. Activated PP2A stimulates dephosphorylation of
the RBL2 protein and the subsequent formation of the RBL2/E2F4
inhibitory complex, which binds to the proximal BRCA1 promoter
and represses BRCA1 protein expression [37] (Fig. 1). The same
effects seen with the activation of PP2A and stimulation of RBL2/
E2F4 inhibitory complex formation were shown after treating
prostate carcinoma cells with ionizing radiation [60]. This inhibi-
tion of BRCA1 expression significantly reduces the ability of cells to
repair DNA DSBs through HRR with a moderate increase in error-
prone non-homologous end-joining (NHEJ) [37]. Hence, NO sti-
mulates GI by inhibiting BRCA1 protein expression and shifting
DNA DSB repair from high-fidelity HRR to error-prone NHEJ.

5. RIBE propagation

NOS activation and overproduction of NO after ionizing radia-
tion not only affects cells with activated NOS with bystander cells,
but also can stimulate specific mechanisms of the signaling am-
plification. When a few cells in the population are individually
irradiated, signaling factors including NO are released from irra-
diated cells and react with adjacent non-irradiated cells. In turn,
these cells are induced to release NO or other factors that facilitate
the propagation of the initial event. With such a series of cascade
reactions, the original signaling factors generated from the directly
irradiated cells may be magnified so that a measurable RIBE can be
propagated relatively far from the area of irradiation. This is si-
milar to the field effect described in cancer biology. Recently,
Martinez-Outschoorn et al. (2010) suggested that such field effect
could be mediated and propagated by oxidative and nitrative
stress in cancer-associated fibroblasts [61]. It was revealed that
MCF7 (breast cancer) cells induce the downregulation of Cav-1 (an
endogenous endothelial NOS (eNOS) inhibitor) in adjacent fibro-
blasts with subsequent overexpression of eNOS. Then, the eNOS-
overexpressing fibroblasts downregulate Cav-1 in the next ad-
jacent fibroblasts that do not express eNOS. As such, the effect of
eNOS stimulation can be laterally propagated from cell-to-cell like
a virus and even amplified [61]. This would then provide a “mu-
tator field” resulting in widespread NO/RNS overproduction with
subsequent propagation of GI.

If we accept NO/RNS-dependent mutagenesis as a completely
stochastic process, we can postulate that the efficacy of muta-
genesis (ME) and carcinogenesis in “mutator fields” depends on
the area of the field with NO/RNS-stimulated genomic instability
(FA), the strength of NO/RNS maintained genomic instability (SGI),

and the duration of this field maintenance (FD). This can be illu-
strated by the equation below:

ME FA FD SGI= * × × **

This is a simplified equation: *it is obvious that number of ac-
tively divided cells involved in the FA cannot be always constant;
**SGI can demonstrate a different strength along the mutagenic
field. It is also obvious, that if any of the factors of the equation (FA,
FD, or SGI) is inappreciable, then the efficacy of the mutagenesis is
inappreciable too. Hence, all these factors are equally important
for the development and maintenance of the mutagenesis. For
example, acute inflammation can produce a very high concentra-
tion of NO/RNS and, as a result, very high level of SGI in the af-
fected area. However, relatively short duration of this effect (FD)
leads to a very low level of ME. On another hand, chronic in-
flammation demonstrates moderate level of SGI, but with the long
duration of this condition (high FD) can simulate the high ME.
Hence, according with the equation (for the same level of FA)
chronic inflammation would demonstrate higher level of ME
compared with the acute inflammation. This conclusion is sup-
ported by numerous studies of the different research groups [62–
65].

6. Conclusion

This mini-review has attempted to introduce the role of NO in
the stimulation and propagation of RIBE. Hydrophobic properties
of NO, which permit its diffusion through the cytoplasm and
plasma membranes, allow this signaling molecule to easily spread
from irradiated cells to bystander cells without the involvement of
GJIC. Propagation of NO and its effects from irradiated cells to
bystander cells is not limited by the distance of NO diffusion. The
ability to downregulate Cav-1 expression in bystander cells allows
NO to stimulate eNOS and produce additional NO. Hence, by-
stander cells become secondary sources of NO generation with the
creation of a wide “mutator field”. Further research is needed to
determine the mechanisms and the role of the NO in the devel-
opment of a “mutator field”. It could be assumed that pretreat-
ment with NOS-inhibitors or NO-scavengers could significantly
attenuate the strength and propagation of RIBE.

The mechanisms of RIBE-activated GI are similar to the me-
chanisms of GI during inflammation. Excessive generation of NO in
irradiated cells can stimulate the GI in these cells as well as in the
bystander cells. One of these mechanisms involves NO-dependent
inhibition of BRCA1 expression with a subsequent downregulation
of DNA HRR and shift to the error-prone NHEJ (Fig. 2). Hence,
accumulation of DNA errors in bystander cells is most likely a re-
sult of decreasing the ability of these cells to properly repair DNA
errors that constantly arise during normal DNA replication.

Fig. 1. Schematic representation of NO/RNS-dependent stimulation of genomic
instability.

Fig. 2. Activation of NOSs in irradiated cells leads to NO-dependent down-
regulation of HRR/NHEJ ratio with subsequent maintenance of genomic instability
in both irradiated and bystander cells.
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Additional research is needed to clarify whether the NO-depen-
dent promotion of survival and proliferation of bystander cells
further stimulates accumulation of DNA errors in these cells.
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