64 research outputs found

    Short communication: Development of an equation for estimating methane emissions of dairy cows from milk Fourier transform mid-infrared spectra by using reference data obtained exclusively from respiration chambers

    Get PDF
    Evaluation and mitigation of enteric methane (CH4) emissions from ruminant livestock, in particular from dairy cows, have acquired global importance for sustainable, climate-smart cattle production. Based on CH4 reference measurements obtained with the SF6 tracer technique to determine ruminal CH4 production, a current equation permits evaluation of individual daily CH4 emissions of dairy cows based on milk Fourier transform mid-infrared (FT-MIR) spectra. However, the respiration chamber (RC) technique is considered to be more accurate than SF6 to measure CH4 production from cattle. This study aimed to develop an equation that allows estimating CH4 emissions of lactating cows recorded in an RC from corresponding milk FT-MIR spectra and to challenge its robustness and relevance through validation processes and its application on a milk spectral database. This would permit confirming the conclusions drawn with the existing equation based on SF6 reference measurements regarding the potential to estimate daily CH4 emissions of dairy cows from milk FT-MIR spectra. A total of 584 RC reference CH4 measurements (mean ± standard deviation of 400 ± 72 g of CH4/d) and corresponding standardized milk mid-infrared spectra were obtained from 148 individual lactating cows between 7 and 321 d in milk in 5 European countries (Germany, Switzerland, Denmark, France, and Northern Ireland). The developed equation based on RC measurements showed calibration and cross-validation coefficients of determination of 0.65 and 0.57, respectively, which is lower than those obtained earlier by the equation based on 532 SF6 measurements (0.74 and 0.70, respectively). This means that the RC-based model is unable to explain the variability observed in the corresponding reference data as well as the SF6-based model. The standard errors of calibration and cross-validation were lower for the RC model (43 and 47 g/d vs. 66 and 70 g/d for the SF6 version, respectively), indicating that the model based on RC data was closer to actual values. The root mean squared error (RMSE) of calibration of 42 g/d represents only 10% of the overall daily CH4 production, which is 23 g/d lower than the RMSE for the SF6-based equation. During the external validation step an RMSE of 62 g/d was observed. When the RC equation was applied to a standardized spectral database of milk recordings collected in the Walloon region of Belgium between January 2012 and December 2017 (1,515,137 spectra from 132,658 lactating cows in 1,176 different herds), an average ± standard deviation of 446 ± 51 g of CH4/d was estimated, which is consistent with the range of the values measured using both RC and SF6 techniques. This study confirmed that milk FT-MIR spectra could be used as a potential proxy to estimate daily CH4 emissions from dairy cows provided that the variability to predict is covered by the model

    Between and within-herd variation in blood and milk biomarkers in Holstein cows in early lactation

    Get PDF
    Both blood- and milk-based biomarkers have been analysed for decades in research settings, although often only in one herd, and without focus on the variation in the biomarkers that are specifically related to herd or diet. Biomarkers can be used to detect physiological imbalance and disease risk and may have a role in precision livestock farming (PLF). For use in PLF, it is important to quantify normal variation in specific biomarkers and the source of this variation. The objective of this study was to estimate the between- and within-herd variation in a number of blood metabolites (β-hydroxybutyrate (BHB), non-esterified fatty acids, glucose and serum IGF-1), milk metabolites (free glucose, glucose-6-phosphate, urea, isocitrate, BHB and uric acid), milk enzymes (lactate dehydrogenase and N-acetyl-β-D-glucosaminidase (NAGase)) and composite indicators for metabolic imbalances (Physiological Imbalance-index and energy balance), to help facilitate their adoption within PLF. Blood and milk were sampled from 234 Holstein dairy cows from 6 experimental herds, each in a different European country, and offered a total of 10 different diets. Blood was sampled on 2 occasions at approximately 14 days-in-milk (DIM) and 35 DIM. Milk samples were collected twice weekly (in total 2750 samples) from DIM 1 to 50. Multilevel random regression models were used to estimate the variance components and to calculate the intraclass correlations (ICCs). The ICCs for the milk metabolites, when adjusted for parity and DIM at sampling, demonstrated that between 12% (glucose-6-phosphate) and 46% (urea) of the variation in the metabolites’ levels could be associated with the herd-diet combination. Intraclass Correlations related to the herd-diet combination were generally higher for blood metabolites, from 17% (cholesterol) to approximately 46% (BHB and urea). The high ICCs for urea suggest that this biomarker can be used for monitoring on herd level. The low variance within cow for NAGase indicates that few samples would be needed to describe the status and potentially a general reference value could be used. The low ICC for most of the biomarkers and larger within cow variation emphasises that multiple samples would be needed - most likely on the individual cows - for making the biomarkers useful for monitoring. The majority of biomarkers were influenced by parity and DIM which indicate that these should be accounted for if the biomarker should be used for monitoring

    Spatial Language Processing in the Blind: Evidence for a Supramodal Representation and Cortical Reorganization

    Get PDF
    Neuropsychological and imaging studies have shown that the left supramarginal gyrus (SMG) is specifically involved in processing spatial terms (e.g. above, left of), which locate places and objects in the world. The current fMRI study focused on the nature and specificity of representing spatial language in the left SMG by combining behavioral and neuronal activation data in blind and sighted individuals. Data from the blind provide an elegant way to test the supramodal representation hypothesis, i.e. abstract codes representing spatial relations yielding no activation differences between blind and sighted. Indeed, the left SMG was activated during spatial language processing in both blind and sighted individuals implying a supramodal representation of spatial and other dimensional relations which does not require visual experience to develop. However, in the absence of vision functional reorganization of the visual cortex is known to take place. An important consideration with respect to our finding is the amount of functional reorganization during language processing in our blind participants. Therefore, the participants also performed a verb generation task. We observed that only in the blind occipital areas were activated during covert language generation. Additionally, in the first task there was functional reorganization observed for processing language with a high linguistic load. As the visual cortex was not specifically active for spatial contents in the first task, and no reorganization was observed in the SMG, the latter finding further supports the notion that the left SMG is the main node for a supramodal representation of verbal spatial relations

    Prediction of key milk biomarkers in dairy cows through milk MIR spectra and international collaborations.

    Full text link
    peer reviewedAt the individual cow level, sub-optimum fertility, mastitis, negative energy balance and ketosis are major issues in dairy farming. These problems are widespread on dairy farms and have an important economic impact. The objectives of this study were: 1) to assess the potential of milk Mid Infrared (MIR) spectra to predict key biomarkers of energy deficit (citrate, isocitrate, glucose-6P, free glucose), ketosis (BHB and acetone), mastitis (NAGase and LDH), and fertility (progesterone); 2) to test alternative methodologies to partial least square regression (PLS) to better account for the specific asymmetric distribution of the biomarkers; and 3) to create robust models by merging large data sets from 5 international or national projects. Benefiting from this international collaboration, the data set comprised a total of 9,143 milk samples from 3,758 cows located in 589 herds across 10 countries and represented 7 breeds. The samples were analyzed by reference chemistry for biomarker contents while the MIR analyses were performed on 30 instruments from different models and brands, with spectra harmonized into a common format. Four quantitative methodologies were evaluated to address the strongly skewed distribution of some biomarkers. PLS was used as the reference basis, and compared with a random modification of distribution associated with PLS (Random-downsampling-PLS), an optimized modification of distribution associated with PLS (KennardStone-downsampling-PLS) and Support Vector Machine (SVM). When the ability of MIR to predict biomarkers was too low for quantification, different qualitative methodologies were tested to discriminate low vs high values of biomarkers. For each biomarker, 20% of the herds were randomly removed within all countries to be used as the validation data set. The remaining 80% of herds were used as the calibration data set. In calibration, the 3 alternative methodologies outperform the PLS performances for the majority of biomarkers. However, in the external herd validation, PLS provided the best results for isocitrate, glucose-6P, free glucose and LDH (R2v = 0.48, 0.58, 0.28, and 0.24). For other molecules, PLS-Random-downsampling and PLS-KennardStone-downsampling outperformed PLS in the majority of cases, but the best results were provided by SVM for citrate, BHB, acetone, NAGase and progesterone (R2v = 0.94, 0.58, 0.76, 0.68, and 0.15). Hence, PLS and SVM based on the entire data set provided the best results for normal and skewed distributions, respectively. Complementary to the quantitative methods, the qualitative discriminant models enabled the discrimination of high and low values for BHB, acetone, and NAGase with a global accuracy around 90%, and glucose-6P with an accuracy of 83%. In conclusion, MIR spectra of milk can enable quantitative screening of citrate as a biomarker of energy deficit and discrimination of low and high values of BHB, acetone, and NAGase, as biomarkers of ketosis and mastitis. Finally, progesterone could not be predicted with sufficient accuracy from milk MIR spectra to be further considered. Consequently, MIR spectrometry can bring valuable information regarding the occurrence of energy deficit, ketosis and mastitis in dairy cows, which in turn have major influences on their fertility and survival

    Bovine Host Genetic Variation Influences Rumen Microbial Methane Production with Best Selection Criterion for Low Methane Emitting and Efficiently Feed Converting Hosts based on Metagenomic Gene Abundance

    Get PDF
    Methane produced by methanogenic archaea in ruminants contributes significantly to anthropogenic greenhouse gas emissions. The host genetic link controlling microbial methane production is unknown and appropriate genetic selection strategies are not developed. We used sire progeny group differences to estimate the host genetic influence on rumen microbial methane production in a factorial experiment consisting of crossbred breed types and diets. Rumen metagenomic profiling was undertaken to investigate links between microbial genes and methane emissions or feed conversion efficiency. Sire progeny groups differed significantly in their methane emissions measured in respiration chambers. Ranking of the sire progeny groups based on methane emissions or relative archaeal abundance was consistent overall and within diet, suggesting that archaeal abundance in ruminal digesta is under host genetic control and can be used to genetically select animals without measuring methane directly. In the metagenomic analysis of rumen contents, we identified 3970 microbial genes of which 20 and 49 genes were significantly associated with methane emissions and feed conversion efficiency respectively. These explained 81% and 86% of the respective variation and were clustered in distinct functional gene networks. Methanogenesis genes (e.g. mcrA and fmdB) were associated with methane emissions, whilst host-microbiome cross talk genes (e.g. TSTA3 and FucI) were associated with feed conversion efficiency. These results strengthen the idea that the host animal controls its own microbiota to a significant extent and open up the implementation of effective breeding strategies using rumen microbial gene abundance as a predictor for difficult-to-measure traits on a large number of hosts. Generally, the results provide a proof of principle to use the relative abundance of microbial genes in the gastrointestinal tract of different species to predict their influence on traits e.g. human metabolism, health and behaviour, as well as to understand the genetic link between host and microbiome
    corecore