1,635 research outputs found

    Extended Reissner-Nordstr\"om solutions sourced by dynamical torsion

    Get PDF
    We find a new exact vacuum solution in the framework of the Poincar\'e Gauge field theory with massive torsion. In this model, torsion operates as an independent field and introduces corrections to the vacuum structure present in General Relativity. The new static and spherically symmetric configuration shows a Reissner-Nordstr\"om-like geometry characterized by a spin charge. It extends the known massless torsion solution to the massive case. The corresponding Reissner-Nordstr\"om-de Sitter solution is also compatible with a cosmological constant and additional U(1) gauge fields.Comment: 12 pages, 0 figures, minor changes, references adde

    New torsion black hole solutions in Poincar\'e gauge theory

    Get PDF
    We derive a new exact static and spherically symmetric vacuum solution in the framework of the Poincar\'e gauge field theory with dynamical massless torsion. This theory is built in such a form that allows to recover General Relativity when the first Bianchi identity of the model is fulfilled by the total curvature. The solution shows a Reissner-Nordstr\"om type geometry with a Coulomb-like curvature provided by the torsion field. It is also shown the existence of a generalized Reissner-Nordstr\"om-de Sitter solution when additional electromagnetic fields and/or a cosmological constant are coupled to gravity.Comment: 14 pages, 0 figures, minor changes, references adde

    Einstein-Yang-Mills-Lorentz black holes

    Get PDF
    Different black hole solutions of the coupled Einstein-Yang-Mills equations have been well known for a long time. They have attracted much attention from mathematicians and physicists since their discovery. In this work, we analyze black holes associated with the gauge Lorentz group. In particular, we study solutions which identify the gauge connection with the spin connection. This ansatz allows one to find exact solutions to the complete system of equations. By using this procedure, we show the equivalence between the Yang-Mills-Lorentz model in curved space-time and a particular set of extended gravitational theories.Comment: 10 pages, 0 figures, minor changes, references added. It matches the version published in Eur. Phys. J.

    Correspondence between Einstein-Yang-Mills-Lorentz systems and dynamical torsion models

    Get PDF
    In the framework of Einstein-Yang-Mills theories, we study the gauge Lorentz group and establish a particular correspondence between this case and a certain class of theories with torsion within Riemann-Cartan space-times. This relation is specially useful in order to simplify the problem of finding exact solutions to the Einstein-Yang-Mills equations. The applicability of the method is divided into two approaches: one associated with the Lorentz group SO(1,n-1) of the space-time rotations and another one with its subgroup SO(n-2). Solutions for both cases are presented by the explicit use of this correspondence and, interestingly, for the last one by imposing on our ansatz the same kind of rotation and reflection symmetry properties as for a nonvanishing space-time torsion. Although these solutions were found in previous literature by a different approach, our method provides an alternative way to obtain them and it may be used in future research to find other exact solutions within this theory.Comment: 10 pages, 0 figures, minor changes, references added. It matches the version published in Phys. Rev.

    Stability in quadratic torsion theories

    Get PDF
    We revisit the definition and some of the characteristics of quadratic theories of gravity with torsion. We start from the most general Lagrangian density quadratic in the curvature and torsion tensors. By assuming that General Relativity should be recovered when torsion vanishes and investigating the behaviour of the vector and pseudovector torsion fields in the weak-gravity regime, we present a set of necessary conditions for the stability of these theories. Moreover, we explicitly obtain the gravitational field equations using the Palatini variational principle with the metricity condition implemented via a Lagrange multiplier

    Neoker Single Crystal Alumina Fibers as reinforcement in Al-based MMC: first steps

    Full text link
    α-Al2O3 whiskers are good candidates for use as strengtheners in advanced composites, specifically, single crystal -Al2O3 whiskers grown with c-axis orientation, because of their favorable fracture strength, stiffness, and creep resistance, even at high temperatures are optimum reinforces. Very few methods are currently available to obtain single-crystal α-Al2O3 whiskers, and these methods were too complex and expensive for use on an industrial scale. A novel method for obtaining c-axis alumina single-crystal whiskers (developed at the Institute of Ceramic Materials of Galicia) has been scaled-up to industrial production by Neoker, a Spin-Off of the of the University of Santiago de Compostela, Spain. The technology for the production of the whiskers involves the reaction between aluminum and powdered silica in Ar atmospheres containing metal vapors. Aluminum is the most popular matrix for the metal matrix composites (MMCs). The Al alloys are quite attractive due to their low density, their capability to be strengthened by precipitation, their good corrosion resistance, high thermal and electrical conductivity, and their high damping capacity. The reinforcement in AMCs could be in the form of continuous/discontinuous whiskers, whisker or particulates, in volume fractions ranging from a few percent to 70%. Properties of AMCs can be tailored to the demands of different industrial applications by suitable combinations of matrix, reinforcement and processing route. The composites studied in the present work were prepared by infiltration processes where the reinforcements were pressed into a preform that was then infiltrated by the molten Al allo

    Polarization coupling and pattern selection in a type-II optical parametric oscillator

    Get PDF
    We study the role of a direct intracavity polarization coupling in the dynamics of transverse pattern formation in type-II optical parametric oscillators. Transverse intensity patterns are predicted from a stability analysis, numerically observed, and described in terms of amplitude equations. Standing wave intensity patterns for the two polarization components of the field arise from the nonlinear competition between two concentric rings of unstable modes in the far field. Close to threshold a wavelength is selected leading to standing waves with the same wavelength for the two polarization components. Far from threshold the competition stabilizes patterns in which two different wavelengths coexist.Comment: 14 figure

    Status of the VERITAS Observatory

    Get PDF
    VERITAS, an Imaging Atmospheric Cherenkov Telescope (IACT) system for gammma-ray astronomy in the GeV-TeV range, has recently completed its first season of observations with a full array of four telescopes. A number of astrophysical gamma-ray sources have been detected, both galactic and extragalactic, including sources previously unknown at TeV energies. We describe the status of the array and some highlight results, and assess the technical performance, sensitivity and shower reconstruction capabilities.Comment: Submitted to Proceedings of "4th Heidelberg International Symposium on High Energy Gamma-Ray Astronomy 2008

    VERITAS Observations of the BL Lac Object 1ES 1218+304

    Full text link
    The VERITAS collaboration reports the detection of very-high-energy (VHE) gamma-ray emission from the high-frequency-peaked BL Lac object 1ES 1218+304 located at a redshift of z=0.182. A gamma-ray signal was detected with high statistical significance for the observations taken during several months in the 2006-2007 observing season. The photon spectrum between ~160 GeV and ~1.8 TeV is well described by a power law with an index of Gamma = 3.08 +/- 0.34(stat) +/- 0.2(sys). The integral flux above 200 GeV corresponds to ~6% of that of the Crab Nebula. The light curve does not show any evidence for VHE flux variability. Using lower limits on the density of the extragalactic background light (EBL) in the near-IR to mid-IR we are able to limit the range of intrinsic energy spectra for 1ES 1218+304. We show that the intrinsic photon spectrum is harder than a power law with an index of Gamma = 2.32 +/- 0.37. When including constraints from the spectra of 1ES 1101-232 and 1ES 0229+200, the spectrum of 1ES 1218+304 is likely to be harder than Gamma = 1.86 +/- 0.37.Comment: Submitted to Proceedings of "4th Heidelberg International Symposium on High Energy Gamma-Ray Astronomy 2008
    corecore