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1 Introduction

There is no doubt that General Relativity (GR) is one of the most successful theories in
Physics, with a solid mathematical structure and experimental confirmation [1, 2]. As a
matter of fact, we are still measuring for the first time some phenomena that was predicted
by the theory a hundred years ago, like gravitational waves [3]. Nevertheless it presents some
problems that need to be addressed. For example, it cannot be formulated as a renormalizable
and unitary Quantum Field Theory. Also, the introduction of spin matter in the energy-
momentum tensor of GR may be cumbersome, since we have to add new formalisms, like
the spin connection. These problems can be solved by introducing a gauge approach to
the gravitational theories. This task was addressed by Sciama and Kibble in [4] and [5],
respectively, where they started to introduce the idea of a Poincaré Gauge (PG) formalism
for gravitational theories. Following this description one finds that the connection must be
compatible with the metric, but not necessarily symmetric. Therefore, it appears a non-
vanishing torsion field, that is consequence of the asymmetric character of the connection.
For an extensive review of the theories that arise through this reasoning see [6].

Since these kinds of theories were established, there has been a lot of discussion on
how would particles behave in a spacetime with a torsion background. In the case of scalar
particles, it is clear to see that they should follow geodesics, since the covariant derivative
of a scalar field does not depend on the affine connection. In addition, by assuming the
minimum coupling principle, we have that light keeps moving along null geodesics, as in
the standard framework of GR. This is because it is impossible to perform the minimally
coupling prescription for the Maxwell’s field while maintaining the U (1) gauge invariance [7].
Therefore the Maxwell equations remain in the same form. The most differential part occurs
when we try to predict how particles with spin 1/2 should move within this background.
This question deserves a deeper analysis, mainly because these kinds of physical trajectories
differ from the ones predicted by GR, and if we are able to measure such differences, we will
be devising a method to determine the possible existence of a torsion field in our universe.
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Furthermore, if we know the corresponding equations of motion we can also calculate the
strength of this field, although we already have some constraints thanks to torsion pendulums
and cosmography observations [8, 9]. In [10] we find a comprehensive review of all the
proposals that have been made to explain this behaviour. Nevertheless, even nowadays there
is no consensus about which one explains it more properly. Here, we will outline the most
important suggestions:

• In 1971, Ponomariev [11] proposed that the test particles move along autoparallels
(curves in which the velocity is parallel transported along itself with the total connec-
tion). There was no reason given, but surprisingly this has been a recurrent proposal
in the posterior literature [12, 13].

• Hehl [14], also in 1971, obtained the equation of motion via the energy-momentum
conservation law, in the single-point approximation, i.e. only using first order terms in
the expansion used to solve the energy-momentum equation. He also pointed out that
torsion could be measured by using spin 1/2 particles.

• In 1981, Audretsch [15] analysed the movement of a Dirac electron in a spacetime
with torsion. He employed the WKB approximation, and obtained the same results
that Rumpf had obtained two years earlier via an unconventional quantum mechanical
approach [16]. It was with this article that the coupling between spin and torsion was
understood.

• In 1991, Nomura, Shirafuji and Hayashi [17] computed the equations of motion by
the application of the Mathisson-Papapetrou (MP) method to expand the energy-
momentum conservation law. They obtained the equations at first order, which are
the ones that Hehl had already calculated, but also made the second order approxima-
tion, finding the same spin precession as Audretsch.

In order to clarify these ideas we organise the article as follows. First, in section 2 we introduce
the mathematical structure of PG theories, and establish the conventions. Then, in the two
following sections we review the WKB approximation by Audretsch and the MP approach
by Nomura et al., comparing them and presenting the reasons to consider the former for
our principal calculations. In the fifth section we present the Raychaudhuri equation in the
WKB approximation, and use one of its parameters as an indicator of the strength of the spin-
torsion coupling. In section 5 we compute the acceleration and the respective trajectories of
an electron in a particular solution, and compare it with the geodesical behaviour predicted
by GR. The final section is devoted to conclusions and future applications.

2 Mathematical structure of Poincaré gauge theories

In this section, we give an introduction to the gravitational theories endowed with a non-
symmetric connection that still fulfills the metricity condition. The most interesting fact
about these theories is that they appear naturally as a gauge theory of the Poincaré
Group [6, 18], making their formalism closer to that of the Standard Model of Particles,
therefore postulating it as a suitable candidate to explore the quantization of gravity. We
will use the same convention as [15] in order to simplify the discussion.

Since the connection is not necessarily symmetric, the torsion may be different from zero

T ρ
µν = Γ ρ

[µν] . (2.1)

– 2 –
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For an arbitrary connection, that meets the metricity condition, there exists a relation with
the Levi-Civita connection

Γ̊ ρ
µν = Γ ρ

µν +K ρ
µν , (2.2)

where
K ρ
µν = T ρνµ + T ρµν − T ρ

µν (2.3)

is the contortion tensor. Here, the upper index˚denotes the quantities associated with the
Levi-Civita connection.

Since the curvature tensors depend on the connection, there is a relation between the
ones defined throughout the Levi-Civita connection and the general ones. For the Riemann
tensor we have

R̊ σ
µνρ = R σ

µνρ + ∇̊νK σ
µρ − ∇̊ρK σ

µν −K σ
αν K

α
µρ +K σ

αρ K
α

µν . (2.4)

By the usual contractions one can obtain the expressions for the Ricci tensor and Ricci scalar.
Here we have just exposed all of these concepts in the usual spacetime coordinates.

Nevertheless, it is customary in PG theories to make calculations in the tangent space, that
we assume in terms of the Minkowski metric ηab. At each point of the spacetime we will have
a different tangent space, that it is defined through a set of orthonormal tetrads (or vierbein)
eαa , that follow the relations

eµaeµb = ηab, eµae
νa = gµν , e a

µ eνa = gµν , e a
µ e

µb = ηab, (2.5)

where the latin letters refer to the tangent space and the greek ones to the spacetime coor-
dinates. It is clear that if these properties hold, then

gµν = e a
µ e

b
ν ηab. (2.6)

All the calculations from now on will be considered in gravitational theories characterized by
this geometrical background.

3 WKB method

In this section we summarize the results obtained by Audtresch in [15], where he calculated
the precession of spin and the trajectories of Dirac particles in torsion theories. The starting
point is the Dirac equation of a spinor field minimally coupled to torsion

i~
(
γµ∇̊µΨ +

1

4
K[αβδ]γ

αγβγδΨ

)
−mΨ = 0, (3.1)

where the γα are the modified gamma matrices, related to the standard ones by the vierbein

γα = eαaγ
a, (3.2)

and Ψ is a general spinor state.
It is worthwhile to note that the contribution of torsion to the Dirac equation is propor-

tional to the antisymmetric part of the torsion tensor, therefore, a torsion field with vanishing
antisymmetric component will not couple to the Dirac field. This is usually known as inert
torsion. Since there is no analytical solution to Equation (3.1), we need to make approxi-
mations in order to solve it. As it is usual in Quantum Mechanics, we can use the WKB
expansion to obtain simpler versions of this equation.

– 3 –
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So, we can expand the general spinor in the following way

Ψ (x) = ei
S(x)
~ (−i~)nan (x) , (3.3)

where we have used the Einstein sum convention (with n going from zero to infinity). We
have also assumed that S (x) is real and an (x) are spinors. As every approximation, it has
a limited range of validity. In this case, we can use it as long as R̊−1 � λB, where λB is
the de Broglie wavelength of the particle. This constraint expresses the fact that we cannot
applied the mentioned approximation in presence of strong gravitational fields and that we
cannot consider highly relativistic particles.

If we insert the expansion into the Dirac equation we obtain the following expressions
for the zero and first order in ~: (

γµ∇̊µS +m
)
a0 (x) = 0, (3.4)

and (
γµ∇̊µS +m

)
a1 (x) = −γµ∇̊µa0 −

1

4
K[αβδ]γ

αγβγδa0. (3.5)

We then assume that the four-momentum of the particles is orthogonal to the surfaces of
constant S (x), and introduce it as

pµ = −∂µS. (3.6)

Then, if we stick to the lowest order, as a consequence of Equation (3.4), the particles will
follow geodesics, as one might expect. But, what happens if we consider the first order in ~?
For the explicit calculations we refer the reader to [15], we will just state the definitions and
give the main results.

To obtain the equation for spin precession we have considered the spin density tensor as

Sµν =
ΨσµνΨ

ΨΨ
, (3.7)

where the σµν are the modified spin matrices, given by

σαβ =
i

2

[
γα, γβ

]
. (3.8)

Then, we can obtain the spin vector from this density

sµ =
1

2
εµναβuνSαβ, (3.9)

where εµναβ is the modified Levi-Civita tensor, related to the usual one by the vierbein

εµναβ = eµae
ν
be
α
ce
β
dε
abcd, (3.10)

and uµ represents the velocity of the particle

uµ =
dxµ

dt
= x′µ. (3.11)

Via the WKB expansion, we find that we can write the lowest order of the spin vector as

sµ0 = b0γ
5γµb0, (3.12)

where b0 is the a0 spinor but normalised.

– 4 –
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With these definitions, we can compute the evolution of the spin vector

uα∇̊αsµ0 = 3K [µβδ]s0 δuβ. (3.13)

On the other hand, the calculation of the acceleration of the particle comes from the splitting
of the Dirac current via the Gordon decomposition and from the identification of the velocity
with the normalised convection current. Then it can be shown that the non-geodesical
behaviour is governed by the following expression

aµ = vε∇̊εvµ =
~

4mesp
R̃µναβb0σ

αβb0v
ν , (3.14)

where R̃µναβ refers to the intrinsic part of the Riemann tensor associated with the totally
antisymmetric component of the torsion tensor:

Γ̃ λ
µν = Γ̊ λ

µν + 3T[µνα]g
αλ. (3.15)

Unlike most of the literature exposed in the introduction, the expression (3.14) does not have
an explicit contortion term coupled to the spin density tensor, hence all the torsion informa-
tion is encrypted into the mentioned part of the Riemann tensor. Finally, it is worthwhile to
note that the standard case of GR is naturally recovered for inert torsion, as expected.

4 Raychaudhuri equation

One way of studying the consequences of the non-geodesical behaviour is to analyse the
evolution of a congruence of the resulting curves throughout the Raychaudhuri equation.
Also, this will provide more clues about the singular behaviour of these particles, and will
help us to assure previous conclusions reached by the authors in [22]. It is known that
Killing vectors define a static frame that will allow us to measure the dynamical quantities
with respect to it [23]. Nevertheless, in general, an arbitrary spacetime will not have Killing
vectors, therefore we do not have a preferred frame to measure the acceleration. In this
case, the best one can do is to measure the relative acceleration of two close bodies, which is
studied by the analysis of the behaviour of congruences of timelike curves.

In order to observe the evolution of a congruence of curves, we shall study the Ray-
chaudhuri equation in spacetimes with torsion, that has been analysed thoroughly in the
literature1 [24, 25].

To obtain this equation, we consider the tensor field Bµν = ∇̃νvµ, which entirely de-
scribes the evolution of the separation vector in a congruence of timelike geodesics, calculated
in terms of the physical connection Γ̃. It is convenient to write this tensor in terms of two
components, one orthogonal (B⊥µν), and the other one parallel (B‖µν) to the congruence.
Given the spatial metric hµν of the hypersurface orthogonal to the congruence at a given
point, one has

Bµν = B⊥µν +B‖µν , (4.1)

where

B⊥µν = hρµh
σ
νBρσ and B‖µν = Bµν −B⊥µν . (4.2)

1Note that preliminary studies in this subject have not taken into account the change in the deviation
vector due to torsion [26, 27].

– 5 –
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At the same time, the orthogonal part B⊥µν , can be decomposed into its antisymmetric
component ωµν , known as vorticity, a traceless symmetric Σµν , usually referred as shear, and
its trace θ, also known as expansion, such as

B⊥µν =
1

3
θ̃hµν + Σ̃µν + ω̃µν , (4.3)

Then, it can be seen that [24]

vρ∇̃ρθ̃ =
dθ̃

ds
= −1

3
θ̃2 − Σ̃µρΣ̃µρ − ω̃µρω̃µρ − R̃ρϕvρvϕ + ∇̃µ

(
vν∇̃νvµ

)
+2T ρ

βα vβ
(

Σ̃α
ρ + ω̃αρ +

1

3
θ̃hαρ + vρã

α

)
+ 2vν∇̃ν

(
vµT ρ

µρ

)
, (4.4)

which is the Raychaudhuri equation.
Now, using the fact that the torsion tensor of the connection Γ̃ is totally antisymmetric

one obtains the following simplification of Equation (4.4)

˙̊
θ = ∇̊αåα − Σ̊αβΣ̊αβ − ω̃αβω̃αβ −

1

3
θ̊2 − R̊αβvαvβ + 2Tβα

ρvβω̃α ρ . (4.5)

For the next step, we take into account the relation between the vorticity calculated with
respect to both connections

ω̃αβ = ω̊αβ + 2Tαβ
µvµ . (4.6)

Then, substituing this relation in (4.5) one obtains

˙̊
θ = ∇̊αåα − Σ̊αβΣ̊αβ − (ω̊αβ + 2Tαβ

µvµ)
(
ω̊αβ + 2Tαβλvλ

)
− 1

3
θ̊2 − R̊αβvαvβ

+2Tβα
ρvβ (ω̊α ρ + 2Tα ρ

µvµ) . (4.7)

Then, we use the fact that if we consider a congruence orthogonal to an spacelike hypersurface
the Levi-Civita vorticity ω̊ is null [28], namely

˙̊
θ = ∇̊αåα − Σ̊αβΣ̊αβ − 1

3
θ̊2 − R̊αβvαvβ − 4Tαβ

µTαβλvµvλ + 4Tβα
ρTα ρ

µvβvµ

= ∇̊αåα − Σ̊αβΣ̊αβ − 1

3
θ̊2 − R̊αβvαvβ . (4.8)

Moreover, if we substitute the acceleration given in Equation (3.14) into the previous equa-
tion, we obtain

vρ∇̊ρθ̊ =
dθ̊

ds
= −1

3
θ̊2 − Σ̊µρΣ̊µρ − R̊ρϕvρvϕ +

~
4mesp

∇̊µ
(
R̃µναβb0σ

αβb0v
ν
)
. (4.9)

Therefore it is clear that in this case the only difference with respect to the geodesical
movement is the acceleration term. Let us analyse it in more detail:

∇̊µ
(
R̃µναβb0σ

αβb0v
ν
)

=
(
∇̊µR̃µναβ

)
b0σ

αβb0v
ν + R̃µναβ

[
∇̊µ
(
b0σ

αβb0

)]
vν

+R̃µναβb0σ
αβb0∇̊µvν , (4.10)

where we have used the Leibniz rule for the covariant derivative. Let us study the different
contributions separately.

– 6 –
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For the third term we have that:

R̃µναβb0σ
αβb0∇̊µvν = R̃µναβb0σ

αβb0

(
1

3
θ̊hµν + Σ̊µν

)
, (4.11)

where the Levi-Civita vorticity tensor is not present in this expression because we are consid-
ering a congruence orthogonal to an spacelike hypersurface. Since the two contracted indexes
µ and ν of the Riemann tensor are antisymmetric and the tensors h and Σ̊ are symmetric we
have that:

R̃µναβb0σ
αβb0∇̊µvν = 0 . (4.12)

In general, for the first and the second term of Expression (4.10) we cannot find any
simplification. In any case, the appearance of focal points will occur when

R̊ρϕv
ρvϕ ≥ Aνvν , (4.13)

where

Aν =
~

4mesp
∇̊µ
(
R̃µναβb0σ

αβb0

)
. (4.14)

As explained at the beginning of this section, this term gives us the contribution of torsion to
the relative acceleration between two spin 1/2 particles, making it a good indicator to see the
difference with respect to a geodesical behaviour. Therefore, we can make a more rigorous
approach to the singular behaviour of these particles. In [22] the authors claim that the
appearance of n-dimensional black/white hole regions was a good criteria for the occurrence
of singularities, even for the Dirac particles, given that the difference with the geodesical
movement were not so strong near the event horizon. Now we can say that this will be a
good criteria as long as Aν � 1, which is what we expect in plausible spacetimes with Dirac
particles.

5 Calculations within the Reissner-Nordström geometry induced by tor-
sion

In this section we will calculate the acceleration and trajectories of electrons in a Reissner-
Nordström solution obtained by two of the authors in the framework of PG field theory of
gravity, with the following vacuum action [29, 30]:

S =
1

16π

∫
d4x
√
−g
[
−R̊+

d1
2
RλρµνR

µνλρ − d1
4
RλρµνR

λρµν

−d1
2
RλρµνR

λµρν + d1Rµν (Rµν −Rνµ)

]
. (5.1)

The exact metric of the solution is

ds2 = f (r) dt2 − 1

f (r)
dr2 − r2

(
dθ2 + sin2θdϕ2

)
, (5.2)

where

f (r) = 1− 2m

r
+
d1κ

2

r2
. (5.3)

From now on we will consider d1 = 1, which simplifies the computations.

– 7 –
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In order to know the total and modified connection we need to have the values of the
non-vanishing torsion components, which are:

T t
tr = a(r)

2 = ḟ(r)
4f(r) ,

T r
tr = b(r)

2 = ḟ(r)
4 ,

T θi
tθi

= c(r)
2 = f(r)

4r ,

T θi
rθi

= g(r)
2 = − 1

4r ,

T
θj

tθi
= eaθjebθiεab

d(r)
2 = eaθjebθiεab

κ
2r ,

T
θj

rθi
= eaθjebθiεab

h(r)
2 = −eaθjebθiεab

κ
2rf(r) ,

(5.4)

where i, j = 1, 2 with i 6= j, and we have made the identification {θ1, θ2} = {θ, ϕ}. Moreover,
εab is the Levi-Civita symbol, and the dot ˙ means the derivative with respect to the radial
coordinate. Also, since the definition of the torsion tensor in the mentioned article differs
from our conventions, all the components are divided by 2 with respect to the ones in there.

Now, with the components of the metric and the torsion tensors, we can calculate the
modified connection and therefore the Riemann tensor of Equation (3.14), in order to obtain
the acceleration. Moreover, we know that the b0 and b0 are the lowest order in ~ of the
general spinor state Ψ. Then we can use that the most general form of a positive energy
solution of the Dirac equation for b0 and b0 is [31]

b0 =


cos
(
α
2

)
eiβsin

(
α
2

)
0

0

 ; b0 =
(
cos
(
α
2

)
, e−iβsin

(
α
2

)
, 0, 0

)
; (5.5)

where the angles give the direction of the spin of the particle

−→n =
(
sin (α) cos (β) , sin (α) sin (β) , cos (α)

)
. (5.6)

Before calculating the acceleration, let us use this form of the spinor to calculate the
corresponding spin vector. Using Equation (3.12) we have

sµ =


0

−sin (α) cos (β)
√
f (r)

− sin(α)sin(β)
r

− cos(α)csc(θ)
r

 ; sµ =
(

0, sin(α)cos(β)√
f(r)

, rsin (α) sin (β) , rsin (θ) cos (α)
)
.

(5.7)
With all this we can calculate the acceleration for the special case of the solution. To

ease the reading of this paper, the acceleration components can be found in the appendix A.
It is worthwhile to note that the only components of the torsion tensor that contribute

to the acceleration are those related to the functions d(r) and h(r). This is important,
because if we set the κ constant to zero, any torsion component does not contribute to the
acceleration. Therefore, in this case the torsion tensor is inert, since the axial vector is zero,
as expected.
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On the other hand, The above expressions are complex and it is difficult to understand
their behaviour intuitively. In this sense, it is interesting to study two relevant cases that
simplify the equations:

• Low values of κ:
If we consider a realistic physical implementation of this solution, in order to avoid
naked singularities, we expect low values of the parameter ξ = κ

m2 . Indeed, ξ is the di-
mensionless parameter which controls the contribution of the torsion tensor. Therefore,
if we consider the acceleration, we can see that it is a good approximation to consider
only up to first order in an expansion of the acceleration in terms of ξ. These results
can be found in the appendix B.

• Asymptotic behaviour:
It is interesting to study what happens at the asymptotic limit r → ∞, in order to
observe what is the leading term and compare its strengh with other effects on the
particle. We obtain the following:

lim
r→∞

at ' m2ξ~
2mespr

(
sin(α) sin(β)θ′(s) + sin(θ) cos(α)ϕ′(s)

)
, (5.8)

lim
r→∞

ar ' m2ξ~
2mespr

(
sin(α) sin(β)θ′(s) + sin(θ) cos(α)ϕ′(s)

)
, (5.9)

lim
r→∞

aθ ' m~
2mespr3

[
−mξr′(s)

(
sin(α) sin(β) +m2ξ cos(α)

)
+mξt′(s)

(
sin(α) sin(β) +m2ξ cos(α)

)
− 2 sin(α) cos(β) sin(θ)ϕ′(s)

]
, (5.10)

lim
r→∞

aϕ ' m~ csc(θ)

2mespr3
[
mξr′(s)

(
m2ξ sin(α) sin(β)− cos(α)

)
+ mξt′(s)

(
cos(α)−m2ξ sin(α) sin(β)

)
+ 2 sin(α) cos(β)θ′(s)

]
. (5.11)

Where we have used the viability condition (5.18), because as we will see, that is a
neccesary condition for the semiclassical aproximation.

We can observe that the time and radial components follow a r−1 pattern, while the
angular components follow a r−3 behaviour. Hence, in the first components the torsion
effect goes asymptotically to zero at a lower rate than the strength provided by the
conventional gravitational field. Meanwhile in the angular ones, it goes at a higher rate.

It is interesting to analyse the two components of the acceleration that are non-zero in GR,
aθ and aϕ, to reach a deeper understanding. They read

aθ|κ=0 =
m~ sin(θ)

2mespr3
√

1− 2m
r

(
sϕr′(s) + 2srϕ′(s)

)
, (5.12)

and

aϕ|κ=0 =
m~ csc(θ)

2mespr3
√

1− 2m
r

(
sθr′(s) + 2srθ′(s)

)
, (5.13)

where we have used the expression of the spin vector (5.7) to simplify the equations. As we can
see, the form of the two equations is very similar, and can be made equal by establishing the
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Figure 1. We have considered a black hole of 24 solar masses and a particle located near the external
event horizon in the θ = π/2 plane, at a radial distance of 2m + ε, where ε = m/10. The position
in ϕ is irrelevant because the acceleration does not depend on this coordinate. For the Bθ case, we
assume that the particle has radial velocity equal to 0.8, and that the direction of the spin is in the
ϕ direction. The rest of the velocity components are zero except for vt = (8.8κ+ 0.3)−1/2. It is clear
from (5.12) and (5.13) that we can only calculate the relative acceleration in the θ direction. For the
Bϕ case the velocity is in the θ direction, and has the same modulus as before. Again, the rest of
the components are zero except for vt = 1.3(8.8κ+ 0.3)−1/2. The spin has only a radial component,
therefore the acceleration would be in the ϕ direction.

identifications sin(θ)↔ csc(θ), and ϕ↔ θ. For two of them we observe that the spin-gravity
coupling acts as a cross-product force, in the sense that the acceleration is perpendicular to
the direction of the velocity and the spin vector.

Now, to measure the torsion contribution in the acceleration we shall compare the ac-
celeration for κ = 0 and for arbitrary values of κ. In this sense, we define a new dimensionless
parameter as the fraction between the acceleration for a finite value of κ and the one given
by κ = 0:

Bµ(κ) =
aµ

aµ|κ=0
. (5.14)

As we have stated before, the viability condition (5.18) implies that

cos(α)θ′(s)− sin(α) sin(β) sin(θ)ϕ′(s) = 0, (5.15)

so at|κ=0 and = ar|κ=0 vanish identically. This means that we cannot study these two compo-
nents of the Bµ parameter. Nevertheless, we can still measure it in the angular coordinates.

Let us explore two examples, that are shown in figure 1. There we represent different
components of Bµ in function of κ for a fixed position and two different spin and velocity
directions.

As can be seen, this gives rise to some interesting features, that we would like to address.
First of all, it is worthwhile to stress that there is nothing in the form of the metric or in
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(a) Trajectory at 35 km of the event horizon. (b) Relative position between the two particles.

Figure 2. For this numerical computation we have used a black hole with 24 solar masses and κ = 10,
with the electron located outside the external event horizon in the θ = π/2 plane. We have assumed
an electron with radial velocity of 0.9 and initial spin aligned in the ϕ direction. All the rest of the
initial conditions are the same than the ones presented in figure 1.

the underlying theory that stops us from taking negative values of κ, in contrast with the
usual electromagnetic version of the solution. We can observe that as we take higher absolute
values for κ we find that the acceleration caused by the spacetime torsion is directed in the
opposite direction of the one produced by the gravitational coupling, reaching significant
differences for large κ. This is expected since we have chosen a strong coupling between spin
and torsion.

Now, we go one step forward and calculate the trajectory of the particle, using Equa-
tion (3.14) and having in mind the spinor evolution equation (3.13), which can be rewritten as

vµ∇̃µb0 = 0. (5.16)

For the exact Reissner-Nordström geometry supported by torsion, we find several interesting
features. First, in order to maintain the semiclassical approximation and the positive energy
associated with the spinor, two conditions must be fulfilled:

ḟ (r)� Lf (r) , (5.17)

where L = 3.3 · 10−8 m−1, so that in the units we are using the derivative of f (r) is at least
two orders of magnitude below the value of f (r).

The other one is (
b0σ

rβb0

)
vβ = 0. (5.18)

The first one is a consequence of the method that we are applying: if both curvature and
torsion are strong then the interaction is also strong, and the WKB approximation fails. This
one is a purely metric condition, since it comes from the Levi-Civita part of the Riemann
tensor, so it will be the same for all the spherically symmetric solutions. The second one
is the radial component of the Pirani condition, that was explained in section 4. We have
solved the above equations numerically for different scenarios, obtaining the results that are
shown in figure 2.
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We have chosen the same trajectories analysed in the discussion of the acceleration. That
discussion shows that any difference from the geodesical behaviour in the radial coordinate
would be an exclusive consequence of the torsion-spin coupling, with no presence of GR
terms, since the acceleration term in this coordinate depends on κ. Indeed it is possible
to have situations under which the geodesics and the trajectories of spin 1/2 particles are
distanced due to this effect, even by starting at the same point. If we are able to measure
such a difference experimentally, we could have an idea of the specific values of the torsion
field present in this particular geometry.

6 Conclusions

Motivated by the lack of consensus on how Dirac particles propagate in torsion theories,
we review the two main formulations for this purpose and compare them. We reach the
conclusion that the WKB method is more consistent for the mentioned task, since it does not
need any additional condition, like the Pirani one, in order to solve the resulting equations.
In addition, it seems a better approach to treat the intrinsic spin dynamic from the Dirac
equation than from a classical equation like the MP one.

After that, we have written the Raychaudhuri equation for the spin particles and de-
fined a new parameter to measure the non-geodesical behaviour. In contrast with just the
acceleration given by Equation (3.14), this parameter constitutes a well-defined physical cri-
terion in order to distinguish observationally the existence of a non-zero torsion, since it
quantifies the difference of the acceleration with respect to the geodesical one measured by
nearby observers.

Finally, we have applied the WKB method to a specific geometrical solution of PG
gravity and analysed the results. Within the asymptotic behaviour at large distances, where
the WKB approximation holds, the torsion effects are typically much smaller than the con-
tribution given by the Levi-Civita connection. Therefore, it is interesting to find scenarios
where this component is not present. In this particular case, we have found a cross-product
behaviour of the gravitational interaction, i.e. an acceleration induced that is perpendicular
to the spin direction of the particle and to its velocity when torsion is absent. Therefore
differences from geodesical behaviours in other directions can only be consequence of the
torsion contribution.

With this fact in mind, we have found a situation where we can appreciate qualitative
differences between the geodesical movement and the trajectories of spin 1/2 particles, as
shown in figure 2. However, this different dynamics needs an important magnitude of the
torsion coupling in order to be observed. To have a realistic situation that can be explained
through the studied metric, we would need a neutron-star like system, where we have a large
concentration of spin aligned particles due to a magnetic field inside the star. In such a case,
we could try to observe the difference of angles between photons and neutrinos coming from
the same source behind the neutron star. This and other studies will be analysed in future
works following the computations developed in this article.

– 12 –



J
C
A
P
0
4
(
2
0
1
9
)
0
3
9

A Acceleration components

Here we present the components of the acceleration calculated following the prescription
discussed in section 5.

at = − κ~

2mespr2
(
κ−2mr+r2

r2

)3/2
{√

κ− 2mr + r2

r2
sin(α) cos(β)r′(s)

−θ′(s) [sin(α) sin(β) (r −m) + κr cos(α)]

+ sin(θ)ϕ′(s) [cos(α) (m− r) + κr sin(α) sin(β)]

}
(A.1)

ar = − ~
2mespr4 (κ− 2mr + r2)

{
r

√
κ−2mr+r2

r2
[
θ′(s)

(
cos(α)

(
2m2r2 −mr3 − 3mκr + κ2

− κ2r4 + κr2
)

+ κr3 sin(α) sin(β)(m− r)
)

+ sin(θ)ϕ′(s)
(
sin(α) sin(β)

(
−2m2r2 +mr3

+ 3mκr − κ2 + κ2r4 − κr2
)

+ κr3 cos(α)(m− r)
)]

+κ sin(α) cos(β)
(
κ− 2mr + r2

)2
t′(s)

}
, (A.2)

aθ = − ~ sin(θ)

4mespr7
(
κ−2mr+r2

r2

)3/2
{
−2 csc(θ)r′(s)

[
cos(α)

(
2m2r2−mr3−3mκr+κ2−κ2r4+κr2

)
+ κr3 sin(α) sin(β)(m−r)

]
−2r

(
−κ+2mr−r2

)[
sin(α) cos(β)(2mr−κ)

√
κ−2mr+r2

r2
ϕ′(s)

−κ csc(θ)t′(s) (sin(α) sin(β)(r −m) + κr cos(α))

]}
, (A.3)

aϕ = − ~ csc(θ)

4mespr7
(
κ−2mr+r2

r2

)3/2
{

2r′(s)
[
sin(α) sin(β)

(
2m2r2−mr3− 3mκr+κ2−κ2r4+κr2

)
− κr3 cos(α)(m− r)

]
+ 2r

(
κ− 2mr + r2

) [
sin(α) cos(β)(κ− 2mr)

√
κ−2mr+r2

r2
θ′(s)

+κt′(s) (cos(α)(m− r) + κr sin(α) sin(β))

]}
(A.4)

B Acceleration at low κ

Here we display the acceleration components at first order of the dimensionless parameter
ξ = κ/m2, as indicated in section 5.

at = − ξm2~

2
(
mespr(r − 2m)

√
1− 2m

r

) [sin(α) cos(β)

√
1− 2m

r
r′(s)

+(m− r)
(
sin(α) sin(β)θ′(s) + cos(α) sin(θ)ϕ′(s)

)]
+O

(
ξ2
)
, (B.1)
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ar =
m~
√

1− 2m
r

2mespr2
(
cos(α)θ′(s)− sin(α) sin(β) sin(θ)ϕ′(s)

)
− ξm2~

4
(
mespr4

√
1− 2m

r

)[θ′(s) (2r2 sin(α) sin(β)(m− r) + cos(α)(2r − 5m)
)

+ sin(θ)ϕ′(s)
(
2r2 cos(α)(m− r) + sin(α) sin(β)(5m− 2r)

)
+ 2r sin(α) cos(β)

√
1− 2m

r
(r − 2m)t′(s)

]
+O

(
ξ2
)
, (B.2)

aθ = − m~
2mespr4

cos(α)r′(s)√
1− 2m

r

+ 2r sin(α) cos(β) sin(θ)ϕ′(s)


+

m2~ξ

4mespr5(r − 2m)
√

1− 2m
r

[
r′(s)

(
2r2 sin(α) sin(β)(m− r) + cos(α)(2r − 3m)

)
+ r sin(α)(r − 2m)

(
2 cos(β) sin(θ)

√
1− 2m

r
ϕ′(s)− 2 sin(β)(m− r)t′(s)

)]
+O

(
ξ2
)
, (B.3)

aϕ =
m~ sin(α) csc(θ)

2mespr4

sin(β)r′(s)√
1− 2m

r

+ 2r cos(β)θ′(s)


+

m2~ξ csc(θ)

4mespr5
√

1− 2m
r (r − 2m)

[
r′(s)

(
2r2 cos(α)(m− r) + sin(α) sin(β)(3m− 2r)

)
+ r(r − 2m)

(
−2 sin(α) cos(β)

√
1− 2m

r
θ′(s)− 2 cos(α)(m− r)t′(s)

)]
+O

(
ξ2
)
. (B.4)
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