45 research outputs found
Effect of hypokinesia on cardiac contractile function and nervous regulation of the heart
Longterm hypokinesia caused cardiac deadaptation in rabbits, which resulted in the diminishing of the left ventricular rate of contraction and relaxation, joined later by decreased vascular resistance. As a results, the ejection rate as well as stroke volume and cardiac output were normal. The decrease of the relaxation speed was more obvious at a high heart rate and results in shortening of the diastolic pause and diminishing of cardiac output. Hearts of the hypokinetic animals were characterized by normal maximal pressure developed by a unit of muccardial mass aorta clamping, decreased adrenoreactivity, and increased cholinoreactivity. This complex of changes is contrary to changes observed in adaptation to exercise, but is similar to changes observed in compensatory hypertrophy of the heart
POLYFLUOROALKYL-2-(HET)ARYLHYDRAZONO-1,3-DICARBONYL COMPOUNDS IN INTRAMOLECULAR CYCLIZATION REACTIONS
This work was financially supported by the Program UB RAS (Grant number 18-3-3-13)
ΠΠΈΠΊΡΠΎΠ²ΠΎΠ»Π½ΠΎΠ²ΡΠ΅ Ρ Π°ΡΠ°ΠΊΡΠ΅ΡΠΈΡΡΠΈΠΊΠΈ ΠΊΠΎΠΌΠΏΠΎΠ·ΠΈΡΠ½ΠΎΠ³ΠΎ ΠΌΠ°ΡΠ΅ΡΠΈΠ°Π»Π° Π½Π° ΠΎΡΠ½ΠΎΠ²Π΅ ΡΠΏΠΎΠΊΡΠΈΠ΄Π½ΠΎΠ³ΠΎ ΠΏΠΎΠ»ΠΈΠΌΠ΅ΡΠ° Ρ Π΄ΠΎΠ±Π°Π²Π»Π΅Π½ΠΈΠ΅ΠΌ Π³ΡΠ°ΡΠ΅Π½ΠΎΠ²ΡΡ ΠΈ ΡΠ΅ΡΡΠΈΡΠ½ΡΡ Π½Π°Π½ΠΎΠΌΠ°ΡΠ΅ΡΠΈΠ°Π»ΠΎΠ²
The radio absorption properties of polymer composite materials with ferrite and graphene additives in the microwave frequency range (26-38 GHz) were studied. It was shown that graphene-like structures have a significant effect on the ability of composite materials to shield from electromagnetic radiation.ΠΡΠΎΠ²Π΅Π΄Π΅Π½Ρ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΡ Π²Π·Π°ΠΈΠΌΠΎΠ΄Π΅ΠΉΡΡΠ²ΠΈΡ ΡΠ»Π΅ΠΊΡΡΠΎΠΌΠ°Π³Π½ΠΈΡΠ½ΠΎΠ³ΠΎ ΠΈΠ·Π»ΡΡΠ΅Π½ΠΈΡ ΠΌΠΈΠΊΡΠΎΠ²ΠΎΠ»Π½ΠΎΠ²ΠΎΠ³ΠΎ Π΄ΠΈΠ°ΠΏΠ°Π·ΠΎΠ½Π° Ρ ΠΏΠΎΠ»ΠΈΠΌΠ΅ΡΠ½ΡΠΌΠΈ ΡΠ°Π΄ΠΈΠΎΠΏΠΎΠ³Π»ΠΎΡΠ°ΡΡΠΈΠΌΠΈ ΠΊΠΎΠΌΠΏΠΎΠ·ΠΈΡΠ½ΡΠΌΠΈ ΠΌΠ°ΡΠ΅ΡΠΈΠ°Π»Π°ΠΌΠΈ, ΡΠΎΠ΄Π΅ΡΠΆΠ°ΡΠΈΠΌΠΈ Π½Π°Π½ΠΎΡΠ°Π·ΠΌΠ΅ΡΠ½ΡΠ΅ ΡΠ΅ΡΡΠΈΡΠ½ΡΠ΅ ΠΈ Π³ΡΠ°ΡΠ΅Π½ΠΎΠ²ΡΠ΅ Π΄ΠΎΠ±Π°Π²ΠΊΠΈ. Π£ΡΡΠ°Π½ΠΎΠ²Π»Π΅Π½ΠΎ, ΡΡΠΎ ΠΏΡΠ΅ΠΈΠΌΡΡΠ΅ΡΡΠ²Π΅Π½Π½ΠΎ ΡΠ»ΠΎΠΈΡΡΡΠ΅ Π³ΡΠ°ΡΠ΅Π½ΠΎΠ²ΡΠ΅ ΡΡΡΡΠΊΡΡΡΡ ΠΎΠΊΠ°Π·ΡΠ²Π°ΡΡ ΡΡΡΠ΅ΡΡΠ²Π΅Π½Π½ΠΎΠ΅ Π²Π»ΠΈΡΠ½ΠΈΠ΅ Π½Π° ΡΠΏΠΎΡΠΎΠ±Π½ΠΎΡΡΡ ΠΊΠΎΠΌΠΏΠΎΠ·ΠΈΡΠ½ΡΡ
ΠΌΠ°ΡΠ΅ΡΠΈΠ°Π»ΠΎΠ² ΠΊ ΡΠΊΡΠ°Π½ΠΈΡΠΎΠ²Π°Π½ΠΈΡ ΡΠ»Π΅ΠΊΡΡΠΎΠΌΠ°Π³Π½ΠΈΡΠ½ΠΎΠ³ΠΎ ΠΈΠ·Π»ΡΡΠ΅Π½ΠΈΡ Π΄Π°Π½Π½ΠΎΠ³ΠΎ ΡΠΏΠ΅ΠΊΡΡΠ°Π»ΡΠ½ΠΎΠ³ΠΎ Π΄ΠΈΠ°ΠΏΠ°Π·ΠΎΠ½Π°
ΠΠ΅Π½Π΅ΡΠΈΡΠ΅ΡΠΊΠΈΠ΅ ΠΌΠ΅Ρ Π°Π½ΠΈΠ·ΠΌΡ ΡΠ°ΡΠΏΠΎΠ·Π½Π°Π²Π°Π½ΠΈΡ Π±Π°ΠΊΡΠ΅ΡΠΈΠΉ ΡΠ΅ΡΠ΅ΠΏΡΠΎΡΠ°ΠΌΠΈ Π²ΡΠΎΠΆΠ΄Π΅Π½Π½ΠΎΠ³ΠΎ ΠΈΠΌΠΌΡΠ½ΠΈΡΠ΅ΡΠ° ΠΊΡΡΠΏΠ½ΠΎΠ³ΠΎ ΡΠΎΠ³Π°ΡΠΎΠ³ΠΎ ΡΠΊΠΎΡΠ°
The research identified a list of molecules involved in the mechanisms of innate immunity in cattle and the recognition of bacterial pathogens. The current list of molecular receptors has expanded to include TLR receptors and the recently defined NOD-like receptors (NLRs): NOD, NALP, NAIP, and IPAF. TLR molecules are designed to transmit a ligand-binding signal on the cell surface or endosome and activate specific molecules of bacterial origin in the cytosol, such as peptidoglycans, RNA, toxins and flagellins. The obtained data on the molecular structure of TLR and NLR receptors indicate their anti-inflammatory role, mediated by signals through nuclear transcription factor ΞΊB and activation of caspase-1 in the inflammasome. It has been shown that the role of immunosensors of extracellular and intracellular perception of bacteria in regulating inflammation is synergistic. Mutations in TLR and NOD receptors are associated with autoimmune inflammatory syndromes. This review examines the body's ways of recognising intracellular pathogens, describes the problem of their mimicry from the animal immune system, and the molecular mechanisms of such interactions. Variants of molecular interactions of innate immune receptors with peptidoglycans, bacterial DNA and toxins, cell wall compartments, and bacterial flagellin receptors are also considered. This study aimed to analyse the current understanding of the genetic and molecular structure of the immune response to bacterial environmental factors and the mechanisms and characteristics of the reaction of the animal body.Π Ρ
ΠΎΠ΄Π΅ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΠΉ ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ ΠΏΠ΅ΡΠ΅ΡΠ΅Π½Ρ ΠΌΠΎΠ»Π΅ΠΊΡΠ», Π²ΠΎΠ²Π»Π΅ΡΠ΅Π½Π½ΡΡ
Π² ΠΌΠ΅Ρ
Π°Π½ΠΈΠ·ΠΌΡ Π²ΡΠΎΠΆΠ΄Π΅Π½Π½ΠΎΠ³ΠΎ ΠΈΠΌΠΌΡΠ½ΠΈΡΠ΅ΡΠ° ΠΊΡΡΠΏΠ½ΠΎΠ³ΠΎ ΡΠΎΠ³Π°ΡΠΎΠ³ΠΎ ΡΠΊΠΎΡΠ° ΠΈ ΡΠ°ΡΠΏΠΎΠ·Π½Π°Π²Π°Π½ΠΈΡ Π±Π°ΠΊΡΠ΅ΡΠΈΠ°Π»ΡΠ½ΡΡ
ΠΏΠ°ΡΠΎΠ³Π΅Π½ΠΎΠ². Π‘ΠΎΠ²ΡΠ΅ΠΌΠ΅Π½Π½ΡΠΉ ΠΏΠ΅ΡΠ΅ΡΠ΅Π½Ρ ΠΌΠΎΠ»Π΅ΠΊΡΠ»ΡΡΠ½ΡΡ
ΡΠ΅ΡΠ΅ΠΏΡΠΎΡΠΎΠ² ΡΠ°ΡΡΠΈΡΠΈΠ»ΡΡ ΠΈ ΡΠ΅ΠΏΠ΅ΡΡ ΠΈΠΌΠΌΡΠ½ΠΎΡΠ΅Π½ΡΠΎΡΡ Π²ΠΊΠ»ΡΡΠ°ΡΡ: ΡΠ΅ΡΠ΅ΠΏΡΠΎΡΡ TLR, Π° ΡΠ°ΠΊΠΆΠ΅ Π½Π΅Π΄Π°Π²Π½ΠΎ ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½Π½ΡΠ΅ NOD-ΠΏΠΎΠ΄ΠΎΠ±Π½ΡΠ΅ ΡΠ΅ΡΠ΅ΠΏΡΠΎΡΡ (NLR): NOD, NALP, NAIP ΠΈ IPAF. ΠΠΎΠ»Π΅ΠΊΡΠ»Ρ TLR ΠΏΡΠ΅Π΄Π½Π°Π·Π½Π°ΡΠ΅Π½Ρ Π΄Π»Ρ ΠΏΠ΅ΡΠ΅Π΄Π°ΡΠΈ ΡΠΈΠ³Π½Π°Π»Π° ΡΠ²ΡΠ·ΡΠ²Π°Π½ΠΈΡ Π»ΠΈΠ³Π°Π½Π΄Π° Π½Π° ΠΏΠΎΠ²Π΅ΡΡ
Π½ΠΎΡΡΠΈ ΠΊΠ»Π΅ΡΠΊΠΈ ΠΈΠ»ΠΈ ΡΠ½Π΄ΠΎΡΠΎΠΌΡ ΠΈ Π°ΠΊΡΠΈΠ²Π°ΡΠΈΠΈ Π² ΡΠΈΡΠΎΠ·ΠΎΠ»Π΅ ΡΠΏΠ΅ΡΠΈΡΠΈΡΠ½ΡΡ
ΠΌΠΎΠ»Π΅ΠΊΡΠ» Π±Π°ΠΊΡΠ΅ΡΠΈΠ°Π»ΡΠ½ΠΎΠ³ΠΎ ΠΏΡΠΎΠΈΡΡ
ΠΎΠΆΠ΄Π΅Π½ΠΈΡ, ΡΠ°ΠΊΠΈΡ
ΠΊΠ°ΠΊ ΠΏΠ΅ΠΏΡΠΈΠ΄ΠΎΠ³Π»ΠΈΠΊΠ°Π½Ρ, Π ΠΠ, ΡΠΎΠΊΡΠΈΠ½Ρ ΠΈ ΡΠ»Π°Π³Π΅Π»Π»ΠΈΠ½Ρ. ΠΠΎΠ»ΡΡΠ΅Π½Π½ΡΠ΅ Π΄Π°Π½Π½ΡΠ΅ ΠΎ ΠΌΠΎΠ»Π΅ΠΊΡΠ»ΡΡΠ½ΠΎΠΉ ΡΡΡΡΠΊΡΡΡΠ΅ ΡΠ΅ΡΠ΅ΠΏΡΠΎΡΠΎΠ² TLR ΠΈ NLR ΡΠΊΠ°Π·ΡΠ²Π°ΡΡ Π½Π° ΠΈΡ
ΠΏΡΠΎΡΠΈΠ²ΠΎΠ²ΠΎΡΠΏΠ°Π»ΠΈΡΠ΅Π»ΡΠ½ΡΡ ΡΠΎΠ»Ρ, ΠΎΠΏΠΎΡΡΠ΅Π΄ΠΎΠ²Π°Π½Π½ΡΡ ΡΠΈΠ³Π½Π°Π»Π°ΠΌΠΈ ΡΠ΅ΡΠ΅Π· ΞΊB-ΡΠ°ΠΊΡΠΎΡ ΡΠ΄Π΅ΡΠ½ΠΎΠΉ ΡΡΠ°Π½ΡΠΊΡΠΈΠΏΡΠΈΠΈ ΠΈ Π°ΠΊΡΠΈΠ²Π°ΡΠΈΠ΅ΠΉ Π² ΠΈΠ½ΡΠ»Π°ΠΌΠΌΠ°ΡΠΎΠΌΠ΅ ΠΊΠ°ΡΠΏΠ°Π·Ρ-1. ΠΠΎΠΊΠ°Π·Π°Π½ΠΎ, ΡΡΠΎ ΡΠΎΠ»Ρ Π² ΡΠ΅Π³ΡΠ»ΡΡΠΈΠΈ Π²ΠΎΡΠΏΠ°Π»Π΅Π½ΠΈΡ ΠΈΠΌΠΌΡΠ½ΠΎΡΠ΅Π½ΡΠΎΡΠΎΠ² Π½Π΅ΠΊΠ»Π΅ΡΠΎΡΠ½ΠΎΠ³ΠΎ ΠΈ Π²Π½ΡΡΡΠΈΠΊΠ»Π΅ΡΠΎΡΠ½ΠΎΠ³ΠΎ Π²ΠΎΡΠΏΡΠΈΡΡΠΈΡ Π±Π°ΠΊΡΠ΅ΡΠΈΠΉ ΡΠΈΠ½Π΅ΡΠ³Π΅ΡΠΈΡΠ½Π°. ΠΡΡΠ°ΡΠΈΠΈ Π² TLR- ΠΈ NOD-ΡΠ΅ΡΠ΅ΠΏΡΠΎΡΠ°Ρ
ΡΠ²ΡΠ·Π°Π½Ρ Ρ Π°ΡΡΠΎΠΈΠΌΡΠ½Π½ΡΠΌΠΈ Π²ΠΎΡΠΏΠ°Π»ΠΈΡΠ΅Π»ΡΠ½ΡΠΌΠΈ ΡΠΈΠ½Π΄ΡΠΎΠΌΠ°ΠΌΠΈ. Π Π΄Π°Π½Π½ΠΎΠΌ ΠΎΠ±Π·ΠΎΡΠ΅ ΡΠ°ΡΡΠΌΠΎΡΡΠ΅Π½Ρ ΡΠΏΠΎΡΠΎΠ±Ρ ΠΎΡΠ³Π°Π½ΠΈΠ·ΠΌΠ° ΡΠ°ΡΠΏΠΎΠ·Π½Π°Π²Π°ΡΡ Π²Π½ΡΡΡΠΈΠΊΠ»Π΅ΡΠΎΡΠ½ΡΠ΅ ΠΏΠ°ΡΠΎΠ³Π΅Π½Ρ, ΠΎΠΏΠΈΡΠ°Π½Π° ΠΏΡΠΎΠ±Π»Π΅ΠΌΠ° ΠΈΡ
ΠΌΠΈΠΌΠΈΠΊΡΠΈΠΈ ΠΎΡ ΠΈΠΌΠΌΡΠ½Π½ΠΎΠΉ ΡΠΈΡΡΠ΅ΠΌΡ ΠΆΠΈΠ²ΠΎΡΠ½ΡΡ
, ΠΌΠΎΠ»Π΅ΠΊΡΠ»ΡΡΠ½ΡΠ΅ ΠΌΠ΅Ρ
Π°Π½ΠΈΠ·ΠΌΡ ΡΠ°ΠΊΠΈΡ
Π²Π·Π°ΠΈΠΌΠΎΠ΄Π΅ΠΉΡΡΠ²ΠΈΠΉ. Π Π°ΡΡΠΌΠΎΡΡΠ΅Π½Ρ ΡΠ°ΠΊΠΆΠ΅ Π²Π°ΡΠΈΠ°Π½ΡΡ ΠΌΠΎΠ»Π΅ΠΊΡΠ»ΡΡΠ½ΡΡ
Π²Π·Π°ΠΈΠΌΠΎΠ΄Π΅ΠΉΡΡΠ²ΠΈΠΉ ΡΠ΅ΡΠ΅ΠΏΡΠΎΡΠΎΠ² Π²ΡΠΎΠΆΠ΄Π΅Π½Π½ΠΎΠ³ΠΎ ΠΈΠΌΠΌΡΠ½ΠΈΡΠ΅ΡΠ° Ρ ΠΏΠ΅ΠΏΡΠΈΠ΄ΠΎΠ³Π»ΠΈΠΊΠ°Π½Π°ΠΌΠΈ, Π±Π°ΠΊΡΠ΅ΡΠΈΠ°Π»ΡΠ½ΠΎΠΉ ΠΠΠ ΠΈ ΡΠΎΠΊΡΠΈΠ½Π°ΠΌΠΈ, ΠΊΠΎΠΌΠΏΠ°ΡΡΠΌΠ΅Π½ΡΠ°ΠΌΠΈ ΠΊΠ»Π΅ΡΠΎΡΠ½ΡΡ
ΡΡΠ΅Π½ΠΎΠΊ, Π° ΡΠ°ΠΊΠΆΠ΅ ΡΠ΅ΡΠ΅ΠΏΡΠΎΡΠ°ΠΌΠΈ Π±Π°ΠΊΡΠ΅ΡΠΈΠ°Π»ΡΠ½ΠΎΠ³ΠΎ ΡΠ»Π°Π³Π΅Π»Π»ΠΈΠ½Π°. Π¦Π΅Π»ΡΡ Π΄Π°Π½Π½ΠΎΠ³ΠΎ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΡ Π±ΡΠ» Π°Π½Π°Π»ΠΈΠ· ΡΠΎΠ²ΡΠ΅ΠΌΠ΅Π½Π½ΠΎΠ³ΠΎ ΠΏΠΎΠ½ΠΈΠΌΠ°Π½ΠΈΡ Π³Π΅Π½Π΅ΡΠΈΡΠ΅ΡΠΊΠΎΠΉ ΠΈ ΠΌΠΎΠ»Π΅ΠΊΡΠ»ΡΡΠ½ΠΎΠΉ ΡΡΡΡΠΊΡΡΡΡ ΠΈΠΌΠΌΡΠ½Π½ΠΎΠ³ΠΎ ΠΎΡΠ²Π΅ΡΠ° Π½Π° Π±Π°ΠΊΡΠ΅ΡΠΈΠ°Π»ΡΠ½ΡΠ΅ ΡΠ°ΠΊΡΠΎΡΡ ΠΎΠΊΡΡΠΆΠ°ΡΡΠ΅ΠΉ ΡΡΠ΅Π΄Ρ, Π° ΡΠ°ΠΊΠΆΠ΅ Π°Π½Π°Π»ΠΈΠ· ΠΌΠ΅Ρ
Π°Π½ΠΈΠ·ΠΌΠΎΠ² ΠΈ ΠΎΡΠΎΠ±Π΅Π½Π½ΠΎΡΡΠ΅ΠΉ ΡΠ΅Π°Π³ΠΈΡΠΎΠ²Π°Π½ΠΈΡ ΠΎΡΠ³Π°Π½ΠΈΠ·ΠΌΠ° ΠΆΠΈΠ²ΠΎΡΠ½ΡΡ
Powerful Potential of Polyfluoroalkyl-Containing 4-Arylhydrazinylidenepyrazol-3-ones for Pharmaceuticals
4-Arylhydrazinylidene-5-(polyfluoroalkyl)pyrazol-3-ones (4-AHPs) were found to be obtained by the regiospecific cyclization of 2-arylhydrazinylidene-3-(polyfluoroalkyl)-3-oxoesters with hydrazines, by the azo coupling of 4-nonsubstituted pyrazol-5-oles with aryldiazonium chlorides or by the firstly discovered acid-promoted self-condensation of 2-arylhydrazinylidene-3-oxoesters. All the 4-AHPs had an acceptable ADME profile. Varying the substituents in 4-AHPs promoted the switching or combining of their biological activity. The polyfluoroalkyl residue in 4-AHPs led to the appearance of an anticarboxylesterase action in the micromolar range. An NH-fragment and/or methyl group instead of the polyfluoroalkyl one in the 4-AHPs promoted antioxidant properties in the ABTS, FRAP and ORAC tests, as well as anti-cancer activity against HeLa that was at the Doxorubicin level coupled with lower cytotoxicity against normal human fibroblasts. Some Ph-N-substituted 4-AHPs could inhibit the growth of N. gonorrhoeae bacteria at MIC 0.9 ΞΌg/mL. The possibility of using 4-AHPs for cell visualization was shown. Most of the 4-AHPs exhibited a pronounced analgesic effect in a hot plate test in vivo at and above the diclofenac and metamizole levels except for the ones with two chlorine atoms in the aryl group. The methylsulfonyl residue was proved to raise the anti-inflammatory effect also. A mechanism of the antinociceptive action of the 4-AHPs through blocking the TRPV1 receptor was proposed and confirmed using in vitro experiment and molecular docking. Β© 2022 by the authors.FFSN-2021-0005; Russian Foundation for Basic Research, Π Π€Π€Π: 20-03-00312; Russian Science Foundation, RSF: 21-13-00390This work was financially supported by the Russian Science Foundation (grant No 21-13-00390 for V.I.S.): the synthesis and analysis of compounds, antimicrobial evaluation, cytotoxicity, analgesic and anti-inflammatory activity, mechanism of analgesia, molecular docking; by the Russian Foundation for Basic Research (grant No 20-03-00312 for Y.V.B.): esterase profile of compounds; antioxidant activity in ABTS and FRAP tests were performed in the frame of IPAC RAS State Targets Project FFSN-2021-0005