7,500 research outputs found
High efficiency multifrequency feed
Antenna systems and particularly compact and simple antenna feeds which can transmit and receive simultaneously in at least three frequency bands, each with high efficiency and polarization diversity are described. The feed system is applicable for frequency bands having nominal frequency bands with the ratio 1:4:6. By way of example, satellite communications telemetry bands operate in frequency bands 0.8 - 1.0 GHz, 3.7 - 4.2 GHz and 5.9 - 6.4 GHz. In addition, the antenna system of the invention has monopulse capability for reception with circular or diverse polarization at frequency band 1
Toward a systems understanding of plant–microbe interactions
Plants are closely associated with microorganisms including pathogens and mutualists that influence plant fitness. Molecular genetic approaches have uncovered a number of signaling components from both plants and microbes and their mode of actions. However, signaling pathways are highly interconnected and influenced by diverse sets of environmental factors. Therefore, it is important to have systems views in order to understand the true nature of plant–microbe interactions. Indeed, systems biology approaches have revealed previously overlooked or misinterpreted properties of the plant immune signaling network. Experimental reconstruction of biological networks using exhaustive combinatorial perturbations is particularly powerful to elucidate network structure and properties and relationships among network components. Recent advances in metagenomics of microbial communities associated with plants further point to the importance of systems approaches and open a research area of microbial community reconstruction. In this review, we highlight the importance of a systems understanding of plant–microbe interactions, with a special emphasis on reconstruction strategies
Electronic charges and electric potential at LaAlO3/SrTiO3 interfaces studied by core-level photoemission spectroscopy
We studied LaAlO3/SrTiO3 interfaces for varying LaAlO3 thickness by
core-level photoemission spectroscopy. In Ti 2p spectra for conducting "n-type"
interfaces, Ti3+ signals appeared, which were absent for insulating "p-type"
interfaces. The Ti3+ signals increased with LaAlO3 thickness, but started well
below the critical thickness of 4 unit cells for metallic transport. Core-level
shifts with LaAlO3 thickness were much smaller than predicted by the polar
catastrophe model. We attribute these observations to surface
defects/adsorbates providing charges to the interface even below the critical
thickness
N = 3 chiral supergravity compatible with the reality condition and higher N chiral Lagrangian density
We obtain N = 3 chiral supergravity (SUGRA) compatible with the reality
condition by applying the prescription of constructing the chiral Lagrangian
density from the usual SUGRA. The chiral Lagrangian density in
first-order form, which leads to the Ashtekar's canonical formulation, is
determined so that it reproduces the second-order Lagrangian density of the
usual SUGRA especially by adding appropriate four-fermion contact terms. We
show that the four-fermion contact terms added in the first-order chiral
Lagrangian density are the non-minimal terms required from the invariance under
first-order supersymmetry transformations. We also discuss the case of higher N
theories, especially for N = 4 and N = 8.Comment: 20 pages, Latex, some more discussions and new references added, some
typos corrected, accepted for publication in Physical Review
Third-order integrable difference equations generated by a pair of second-order equations
We show that the third-order difference equations proposed by Hirota,
Kimura and Yahagi are generated by a pair of second-order difference
equations. In some cases, the pair of the second-order equations are equivalent
to the Quispel-Robert-Thomson(QRT) system, but in the other cases, they are
irrelevant to the QRT system. We also discuss an ultradiscretization of the
equations.Comment: 15 pages, 3 figures; Accepted for Publication in J. Phys.
Non-resonant inelastic x-ray scattering involving excitonic excitations
In a recent publication Larson \textit{et al.} reported remarkably clear
- excitations for NiO and CoO measured with x-ray energies well below the
transition metal edge. In this letter we demonstrate that we can obtain an
accurate quantitative description based on a local many body approach. We find
that the magnitude of can be tuned for maximum sensitivity for
dipole, quadrupole, etc. excitations. We also find that the direction of
with respect to the crystal axes can be used as an equivalent to
polarization similar to electron energy loss spectroscopy, allowing for a
determination of the local symmetry of the initial and final state based on
selection rules. This method is more generally applicable and combined with the
high resolution available, could be a powerful tool for the study of local
distortions and symmetries in transition metal compounds including also buried
interfaces
Heterogeneity Induced Order in Globally Coupled Chaotic Systems
Collective behavior is studied in globally coupled maps with distributed
nonlinearity. It is shown that the heterogeneity enhances regularity in the
collective dynamics. Low-dimensional quasiperiodic motion is often found for
the mean-field, even if each element shows chaotic dynamics. The mechanism of
this order is due to the formation of an internal bifurcation structure, and
the self-consistent dynamics between the structures and the mean-field.
Keywords: Globally Coupled Map with heterogeneity, Collective behaviorComment: 11 pages (Revtex) + 4 figures (PostScript,tar+gzip
Dominant particle-hole contributions to the phonon dynamics in the spinless one-dimensional Holstein model
In the spinless Holstein model at half-filling the coupling of electrons to
phonons is responsible for a phase transition from a metallic state at small
coupling to a Peierls distorted insulated state when the electron-phonon
coupling exceeds a critical value. For the adiabatic case of small phonon
frequencies, the transition is accompanied by a phonon softening at the
Brillouin zone boundary whereas a hardening of the phonon mode occurs in the
anti-adiabatic case. The phonon dynamics studied in this letter do not only
reveal the expected renormalization of the phonon modes but also show
remarkable additional contributions due to electronic particle-hole
excitations.Comment: 7 pages, 4 figures and 1 table included; v2: discussion of Luttinger
liquid parameters adde
- …
