2,940 research outputs found

    α-Actinin and Filamin Cooperatively Enhance the Stiffness of Actin Filament Networks

    Get PDF
    BACKGROUND: The close subcellular proximity of different actin filament crosslinking proteins suggests that these proteins may cooperate to organize F-actin structures to drive complex cellular functions during cell adhesion, motility and division. Here we hypothesize that alpha-actinin and filamin, two major F-actin crosslinking proteins that are both present in the lamella of adherent cells, display synergistic mechanical functions. METHODOLOGY/PRINCIPAL FINDINGS: Using quantitative rheology, we find that combining alpha-actinin and filamin is much more effective at producing elastic, solid-like actin filament networks than alpha-actinin and filamin separately. Moreover, F-actin networks assembled in the presence of alpha-actinin and filamin strain-harden more readily than networks in the presence of either alpha-actinin or filamin. SIGNIFICANCE: These results suggest that cells combine auxiliary proteins with similar ability to crosslink filaments to generate stiff cytoskeletal structures, which are required for the production of internal propulsive forces for cell migration, and that these proteins do not have redundant mechanical functions

    Glycogen Synthase Kinase (GSK) 3β phosphorylates and protects nuclear myosin 1c from proteasome-mediated degradation to activate rDNA transcription in early G1 cells

    Get PDF
    Nuclear myosin 1c (NM1) mediates RNA polymerase I (pol I) transcription activation and cell cycle progression by facilitating PCAF-mediated H3K9 acetylation, but the molecular mechanism by which NM1 is regulated remains unclear. Here, we report that at early G1 the glycogen synthase kinase (GSK) 3β phosphorylates and stabilizes NM1, allowing for NM1 association with the chromatin. Genomic analysis by ChIP-Seq showed that this mechanism occurs on the rDNA as active GSK3β selectively occupies the gene. ChIP assays and transmission electron microscopy in GSK3β-/- mouse embryonic fibroblasts indicated that at G1 rRNA synthesis is suppressed due to decreased H3K9 acetylation leading to a chromatin state incompatible with transcription. We found that GSK3β directly phosphorylates the endogenous NM1 on a single serine residue (Ser-1020) located within the NM1 C-terminus. In G1 this phosphorylation event stabilizes NM1 and prevents NM1 polyubiquitination by the E3 ligase UBR5 and proteasome-mediated degradation. We conclude that GSK3β-mediated phosphorylation of NM1 is required for pol I transcription activation

    Patterning graphene nanostripes in substrate-supported functionalized graphene: A promising route to integrated, robust, and superior transistors

    Full text link
    It is promising to apply quantum-mechanically confined graphene systems in field-effect transistors. High stability, superior performance, and large-scale integration are the main challenges facing the practical application of graphene transistors. Our understandings of the adatom-graphene interaction combined with recent progress in the nanofabrication technology indicate that very stable and high-quality graphene nanostripes could be integrated in substrate-supported functionalized (hydrogenated or fluorinated) graphene using electron-beam lithography. We also propose that parallelizing a couple of graphene nanostripes in a transistor should be preferred for practical application, which is also very useful for transistors based on graphene nanoribbon.Comment: Frontiers of Physics (2012) to be publishe

    Activation of Cytotoxic and Regulatory Functions of NK Cells by Sindbis Viral Vectors

    Get PDF
    Oncolytic viruses (OVs) represent a relatively novel anti-cancer modality. Like other new cancer treatments, effective OV therapy will likely require combination with conventional treatments. In order to design combinatorial treatments that work well together, a greater scrutiny of the mechanisms behind the individual treatments is needed. Sindbis virus (SV) based vectors have previously been shown to target and kill tumors in xenograft, syngeneic, and spontaneous mouse models. However, the effect of SV treatment on the immune system has not yet been studied. Here we used a variety of methods, including FACS analysis, cytotoxicity assays, cell depletion, imaging of tumor growth, cytokine blockade, and survival experiments, to study how SV therapy affects Natural Killer (NK) cell function in SCID mice bearing human ovarian carcinoma tumors. Surprisingly, we found that SV anti-cancer efficacy is largely NK cell-dependent. Furthermore, the enhanced therapeutic effect previously observed from Sin/IL12 vectors, which carry the gene for interleukin 12, is also NK cell dependent, but works through a separate IFNγ-dependent mechanism, which also induces the activation of peritoneal macrophages. These results demonstrate the multimodular nature of SV therapy, and open up new possibilities for potential synergistic or additive combinatorial therapies with other treatments

    Efficacy and Safety of Dabrafenib in Pediatric Patients with BRAF V600 Mutation-Positive Relapsed or Refractory Low-Grade Glioma: Results from a Phase I/IIa Study

    Get PDF
    PURPOSE: Pediatric low-grade glioma (pLGG) is the most prevalent childhood brain tumor. Patients with BRAF V600 mutation-positive pLGG may benefit from treatment with dabrafenib. Part 2 of a phase I/IIa study, open-label study (NCT01677741) explores the activity and safety of dabrafenib treatment in these patients. PATIENTS AND METHODS: Patients ages 1 to <18 years who had BRAF V600-mutant solid tumors (≥1 evaluable lesion) with recurrent, refractory, or progressive disease after ≥1 standard therapy were treated with oral dabrafenib 3.0 to 5.25 mg/kg/day (part 1) or at the recommended phase II dose (RP2D; part 2). Primary objectives were to determine the RP2D (part 1, results presented in a companion paper) and assess clinical activity (part 2). Here, we report the clinical activity, including objective response rates (ORRs) using Response Assessment in Neuro-Oncology criteria and safety across parts 1 and 2. RESULTS: Overall, 32 patients with pLGG were enrolled (part 1, n = 15; part 2, n = 17). Minimum follow-up was 26.2 months. Among all patients, the ORR was 44% [95% confidence interval (CI), 26-62] by independent review. The 1-year progression-free survival rate was 85% (95% CI, 64-94). Treatment-related adverse events (AE) were reported in 29 patients (91%); the most common was fatigue (34%). Grade 3/4 treatment-related AEs were reported in 9 patients (28%). CONCLUSIONS: Dabrafenib demonstrated meaningful clinical activity and acceptable tolerability in patients with BRAF V600-mutant pLGG

    Cabibbo-allowed nonleptonic weak decays of charmed baryons

    Full text link
    Cabibbo-allowed nonleptonic weak decays of charmed baryons \lamc,~\xin,~\xip and Ωc0\Omega_c^0 into an octet baryon and a pseudoscalar meson are analyzed. The nonfactorizable contributions are evaluated under pole approximation, and it turns out that the ss-wave amplitudes are dominated by the low-lying \halfm resonances, while pp-wave ones governed by the ground-state \halfp poles. The MIT bag model is employed to calculate the coupling constants, form factors and baryon matrix elements. Our conclusions are: (i) ss waves are no longer dominated by commutator terms; the current-algebra method is certainly not applicable to parity-violating amplitudes, (ii) nonfactorizable WW exchange effects are generally important; they can be comparable to and somtimes even dominate over factorizable contributions, depending on the decay modes under consideration, (iii) large-NcN_c approximation for factorizable amplitudes also works in the heavy baryon sector and it accounts for the color nonsuppression of \lamc\ri p\bar{K}^0 relative to \lamc\ri\Lambda\pi^+, (iv) a measurement of the decay rate and the sign of the α\alpha asymmetry parameter of certain proposed decay modes will help discern various models; especially the sign of α\alpha in \lamc\ri\Sigma\pi decays can be used to unambiguously differentiate recent theoretical schemes from current algebra, and (v) pp waves are the dominant contributions to the decays \lamc\ri\Xi^0 K^+ and \xin\ri\Sigma^+ K^-, but they are subject to a large cancellation; this renders present theoretical predictions on these two channels unreliable.Comment: PHYZZX, 31 pages, 3 tables, IP-ASTP-10-93, ITP-SB-93-2

    Distinguishing Various Models of the 125 GeV Boson in Vector Boson Fusion

    Full text link
    The hint of a new particle around 125 GeV at the LHC through the decay modes of diphoton and a number of others may point to quite a number of possibilities. While at the LHC the dominant production mechanism for the Higgs boson of the standard model and some other extensions is via the gluon fusion process, the alternative vector boson fusion is more sensitive to electroweak symmetry breaking through the gauge-Higgs couplings and therefore can be used to probe for models beyond the standard model. In this work, using the well known dijet-tagging technique to single out the vector boson fusion mechanism, we investigate its capability to discriminate a number of models that have been suggested to give an enhanced inclusive diphoton production rate, including the standard model Higgs boson, fermiophobic Higgs boson, Randall-Sundrum radion, inert-Higgs-doublet model, two-Higgs-doublet model, and the MSSM. The rates in vector-boson fusion can give more information of the underlying models to help distinguishing among the models.Comment: 31 pages, 3 figures; in this version some wordings are change

    An interdisciplinary intervention for older Taiwanese patients after surgery for hip fracture improves health-related quality of life

    Get PDF
    Abstract Background The effects of intervention programs on health-related quality of life (HRQOL) of patients with hip fracture have not been well studied. We hypothesized that older patients with hip fracture who received our interdisciplinary intervention program would have better HRQOL than those who did not. Methods A randomized experimental design was used. Older patients with hip fracture (N = 162), 60 to 98 years old, from a medical center in northern Taiwan were randomly assigned to an experimental (n = 80) or control (n = 82) group. HRQOL was measured by the SF-36 Taiwan version at 1, 3, 6, and 12 months after discharge. Results The experimental group had significantly better overall outcomes in bodily pain (&#946; = 9.38, p = 0.002), vitality (&#946; = 9.40, p &lt; 0.001), mental health (&#946; = 8.16, p = 0.004), physical function (&#946; = 16.01, p &lt; 0.001), and role physical (&#946; = 22.66, p &lt; 0.001) than the control group at any time point during the first year after discharge. Physical-related health outcomes (physical functioning, role physical, and vitality) had larger treatment effects than emotional/mental- and social functioning-related health outcomes. Conclusions This interdisciplinary intervention program may improve health outcomes of elders with hip fracture. Our results may provide a reference for health care providers in countries using similar programs with Chinese/Taiwanese immigrant populations. Trial registration NCT01052636http://deepblue.lib.umich.edu/bitstream/2027.42/78259/1/1471-2474-11-225.xmlhttp://deepblue.lib.umich.edu/bitstream/2027.42/78259/2/1471-2474-11-225.pdfPeer Reviewe

    Thermal stress induces glycolytic beige fat formation via a myogenic state.

    Get PDF
    Environmental cues profoundly affect cellular plasticity in multicellular organisms. For instance, exercise promotes a glycolytic-to-oxidative fibre-type switch in skeletal muscle, and cold acclimation induces beige adipocyte biogenesis in adipose tissue. However, the molecular mechanisms by which physiological or pathological cues evoke developmental plasticity remain incompletely understood. Here we report a type of beige adipocyte that has a critical role in chronic cold adaptation in the absence of β-adrenergic receptor signalling. This beige fat is distinct from conventional beige fat with respect to developmental origin and regulation, and displays enhanced glucose oxidation. We therefore refer to it as glycolytic beige fat. Mechanistically, we identify GA-binding protein α as a regulator of glycolytic beige adipocyte differentiation through a myogenic intermediate. Our study reveals a non-canonical adaptive mechanism by which thermal stress induces progenitor cell plasticity and recruits a distinct form of thermogenic cell that is required for energy homeostasis and survival

    Adenosine A2A receptor modulation of hippocampal CA3-CA1 synapse plasticity during associative learning in behaving mice

    Get PDF
    © 2009 Nature Publishing Group All rights reservedPrevious in vitro studies have characterized the electrophysiological and molecular signaling pathways of adenosine tonic modulation on long-lasting synaptic plasticity events, particularly for hippocampal long-term potentiation(LTP). However, it remains to be elucidated whether the long-term changes produced by endogenous adenosine in the efficiency of synapses are related to those required for learning and memory formation. Our goal was to understand how endogenous activation of adenosine excitatory A2A receptors modulates the associative learning evolution in conscious behaving mice. We have studied here the effects of the application of a highly selective A2A receptor antagonist, SCH58261, upon a well-known associative learning paradigm - classical eyeblink conditioning. We used a trace paradigm, with a tone as the conditioned stimulus (CS) and an electric shock presented to the supraorbital nerve as the unconditioned stimulus(US). A single electrical pulse was presented to the Schaffer collateral–commissural pathway to evoke field EPSPs (fEPSPs) in the pyramidal CA1 area during the CS–US interval. In vehicle-injected animals, there was a progressive increase in the percentage of conditioning responses (CRs) and in the slope of fEPSPs through conditioning sessions, an effect that was completely prevented (and lost) in SCH58261 (0.5 mg/kg, i.p.)-injected animals. Moreover, experimentally evoked LTP was impaired in SCH58261- injected mice. In conclusion, the endogenous activation of adenosine A2A receptors plays a pivotal effect on the associative learning process and its relevant hippocampal circuits, including activity-dependent changes at the CA3-CA1 synapse.This study was supported by grants from the Spanish Ministry of Education and Research (BFU2005-01024 and BFU2005-02512), Spanish Junta de Andalucía (BIO-122 and CVI-02487), and the Fundación Conocimiento y Cultura of the Pablo de Olavide University (Seville, Spain).B. Fontinha was in receipt of a studentship from a project grant (POCI/SAU-NEU/56332/2004) supported by Fundação para a Ciência e Tecnologia (FCT, Portugal), and of an STSM from Cost B30 concerted action of the EU
    • …
    corecore