942 research outputs found

    Electron scattering by H2 with and without vibrational excitation. III. Experimental and theoretical study of inelastic scattering

    Get PDF
    The ratios of the differential cross sections (DCS's) for excitation of the first, second, and third vibrational states of H2 in its ground electronic state to the elastic DCS have been measured as a function of scattering angle in the 10°–80° range and impact energy in the 7–81.6-eV range. From these ratios the DCS's corresponding to transitions from the ground to the first two vibrationally excited levels (fundamental and first overtone bands) were obtained by utilizing the elastic cross sections determined in the previous paper (II). In addition, the DCS for excitation of the second overtone band was determined for an impact energy of 10 eV. By angular extrapolation and integration of the DCS's the integral cross sections for the vibrational excitations were also determined. In addition, all these cross sections have been calculated using a quantum-mechanical method based on potential scattering in a plane wave scattering approximation which is described in Part I of this series. The present experimental and theoretical cross sections and previous measurements and calculations are compared. The calculated DCS ratios and the DCS's themselves for the fundamental excitation are in good agreement with experiment at 7 and 10 eV; however, at higher energies the calculated DCS's are generally larger than the experimental ones, at some angles by as much as a factor of 10. The calculated ratio of the DCS for the fundamental excitation to the elastic DCS shows a minimum as a function of angle, in qualitative agreement with the experimental results in the 13.6–81.6-eV energy range. The experimental DCS's for vibrational excitation also show a deep minimum. For excitation of the first overtone vibration, the experimental ratios are an order of magnitude larger than the calculated ones at low energy but in better agreement for the magnitude at higher energy. This discrepancy at low energies is explained in terms of resonance scattering. Our experiments are in good agreement with those of others in the few (low energy) cases where comparison is possible

    A Computational Procedure to Detect a New Type of High Dimensional Chaotic Saddle and its Application to the 3-D Hill's Problem

    Get PDF
    A computational procedure that allows the detection of a new type of high-dimensional chaotic saddle in Hamiltonian systems with three degrees of freedom is presented. The chaotic saddle is associated with a so-called normally hyperbolic invariant manifold (NHIM). The procedure allows to compute appropriate homoclinic orbits to the NHIM from which we can infer the existence a chaotic saddle. NHIMs control the phase space transport across an equilibrium point of saddle-centre-...-centre stability type, which is a fundamental mechanism for chemical reactions, capture and escape, scattering, and, more generally, ``transformation'' in many different areas of physics. Consequently, the presented methods and results are of broad interest. The procedure is illustrated for the spatial Hill's problem which is a well known model in celestial mechanics and which gained much interest e.g. in the study of the formation of binaries in the Kuiper belt.Comment: 12 pages, 6 figures, pdflatex, submitted to JPhys

    Electron Scattering by H 2

    Full text link

    Ehrenfest Statistical Dynamics in Chemistry: Study of Decoherence Effects

    Get PDF
    In previous works, we introduced a geometric route to define our Ehrenfest statistical dynamics (ESD) and we proved that, for a simple toy model, the resulting ESD does not preserve purity. We now take a step further: we investigate decoherence and pointer basis in the ESD model by considering some uncertainty in the degrees of freedom of a simple but realistic molecular model, consisting of two classical cores and one quantum electron. The Ehrenfest model is sometimes discarded as a valid approximation to nonadiabatic coupled quantum-classical dynamics because it does not describe the decoherence in the quantum subsystem. However, any rigorous statistical analysis of the Ehrenfest dynamics, such as the described ESD formalism, proves that decoherence exists. In this article, decoherence in ESD is studied by measuring the change in the quantum subsystem purity and by analyzing the appearance of the pointer basis to which the system decoheres, which for our example is composed of the eigenstates of the electronic Hamiltonian.We have received support by Research Grants E24/1 and E24/3 (DGA, Spain), MINECO MTM2015-64166-C2-1-P and FIS2017-82426-P, and MICINN FIS2013-46159-C3-2-P and FIS2014-55867-P. Support from Scholarships B100/13 (DGA) and FPU13/01587 (MECD) for J.A.J.-G. is also acknowledged
    • …
    corecore